Publications by authors named "Clive J Hoggart"

Background: Coronary artery disease (CAD) is a complex, heterogeneous disease with distinct etiological mechanisms. These different etiologies may give rise to multiple subtypes of CAD that could benefit from alternative preventions and treatments. However, so far, there have been no systematic efforts to predict CAD subtypes using clinical and genetic factors.

View Article and Find Full Text PDF

Understanding the genetic architecture of human traits is of key biological, medical and evolutionary importance. Despite much progress, little is known about how genetic architecture varies across the trait continuum and, in particular, if it differs in the tails of complex traits, where disease often occurs. Here, applying a novel approach based on polygenic scores, we reveal striking departures from polygenic architecture across 148 quantitative trait tails, consistent with distinct concentrations of high-impact rare alleles in one or both tails of most of the traits.

View Article and Find Full Text PDF

Here we present BridgePRS, a novel Bayesian polygenic risk score (PRS) method that leverages shared genetic effects across ancestries to increase PRS portability. We evaluate BridgePRS via simulations and real UK Biobank data across 19 traits in individuals of African, South Asian and East Asian ancestry, using both UK Biobank and Biobank Japan genome-wide association study summary statistics; out-of-cohort validation is performed in the Mount Sinai (New York) BioMe biobank. BridgePRS is compared with the leading alternative, PRS-CSx, and two other PRS methods.

View Article and Find Full Text PDF

Background: Polygenic risk score (PRS) analyses are now routinely applied across biomedical research. However, as PRS studies grow in size, there is an increased risk of sample overlap between the genome-wide association study (GWAS) from which the PRS is derived and the "target sample," in which PRSs are computed and hypotheses are tested. Despite the wide recognition of the sample overlap problem, its potential impact on the results from PRS studies has not yet been quantified, and no analytical solution has been provided.

View Article and Find Full Text PDF
Article Synopsis
  • Polygenic risk scores (PRSs) are important tools in biomedicine that estimate genetic risk for diseases but often reduce an individual's complex genetic profile to a single number, losing significant information.
  • The authors propose a new approach called 'pathway polygenic' scores, which calculate genetic risks across multiple genetic pathways rather than relying on a single score.
  • They introduce a software called PRSet that enhances the analysis of these pathway PRSs, showing that it can outperform traditional methods in capturing genetic signals and classifying disease subtypes effectively.
View Article and Find Full Text PDF

Background: Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD patients from patients with other febrile conditions.

View Article and Find Full Text PDF

Importance: A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 is hypothesized to play a role in the pathogenesis of invasive infection, but studies in sepsis are lacking.

Objectives: To study A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 protein level in pediatric sepsis and to study the association with outcome.

Design: Data from two prospective cohort studies.

View Article and Find Full Text PDF

Accurate and affordable point-of-care diagnostics for tuberculosis (TB) are needed. Host serum protein signatures have been derived for use in primary care settings, however validation of these in secondary care settings is lacking. We evaluated serum protein biomarkers discovered in primary care cohorts from Africa reapplied to patients from secondary care.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on identifying a specific cytokine biosignature to differentiate childhood tuberculosis (TB) from other respiratory diseases.
  • Involving 431 children, the researchers found that a combination of IL-1ra, IL-7, and IP-10 effectively distinguished TB cases from other conditions, achieving a respectable accuracy in testing.
  • The findings suggest that this biosignature could be a valuable tool for diagnosing childhood TB, pending further validation and optimization.
View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified ~20 melanoma susceptibility loci, most of which are not functionally characterized. Here we report an approach integrating massively-parallel reporter assays (MPRA) with cell-type-specific epigenome and expression quantitative trait loci (eQTL) to identify susceptibility genes/variants from multiple GWAS loci. From 832 high-LD variants, we identify 39 candidate functional variants from 14 loci displaying allelic transcriptional activity, a subset of which corroborates four colocalizing melanocyte cis-eQTL genes.

View Article and Find Full Text PDF

Background: Fluid resuscitation is the recommended management of shock, but increased mortality in febrile African children in the FEAST trial. We hypothesised that fluid bolus-induced deaths in FEAST would be associated with detectable changes in cardiovascular, neurological, or respiratory function, oxygen carrying capacity, and blood biochemistry.

Methods: We developed composite scores for respiratory, cardiovascular, and neurological function using vital sign data from the FEAST trial, and used them to compare participants from FEAST with those from four other cohorts and to identify differences between the bolus (n=2097) and no bolus (n=1044) groups of FEAST.

View Article and Find Full Text PDF
Article Synopsis
  • There is currently no diagnostic test for Kawasaki disease (KD), leading to potential delays in treatment and increased risk of serious complications like coronary artery aneurysms.
  • The objective of the study was to identify a gene expression signature in whole blood that could differentiate children with KD in their early illness (first week) from those with other febrile conditions.
  • The research involved a diverse group of 404 children for discovery testing, and a separate validation group showed promising results in using gene expression patterns to effectively distinguish KD from other infections and inflammatory diseases.
View Article and Find Full Text PDF

Background: Detection of genomic inversions remains challenging. Many existing methods primarily target inzversions with a non repetitive breakpoint, leaving inverted repeat (IR) mediated non-allelic homologous recombination (NAHR) inversions largely unexplored.

Result: We present npInv, a novel tool specifically for detecting and genotyping NAHR inversion using long read sub-alignment of long read sequencing data.

View Article and Find Full Text PDF
Article Synopsis
  • Clinical differentiation between bacterial and viral infections in children is challenging, leading to both unnecessary antibiotic use and missed bacterial infections.
  • The study aimed to identify a specific blood RNA expression signature to accurately distinguish between bacterial and viral infections in febrile children across several countries from 2009 to 2013.
  • The RNA signature was tested on children with confirmed bacterial and viral infections, showing promising results in distinguishing these infections, potentially improving diagnosis and treatment decisions.
View Article and Find Full Text PDF

The Kobayashi score (KS) predicts intravenous immunoglobulin (IVIG) resistance in Japanese children with Kawasaki disease (KD) and has been used to select patients for early corticosteroid treatment. We tested the ability of the KS to predict IVIG resistance and coronary artery abnormalities (CAA) in 78 children treated for KD in our UK centre. 19/59 children were IVIG non-responsive.

View Article and Find Full Text PDF

The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups.

View Article and Find Full Text PDF

Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of 'age at first tooth' and 'number of teeth' using 5998 and 6609 individuals, respectively, from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2 446 724 SNPs imputed in both studies.

View Article and Find Full Text PDF

In recent years it has emerged that structural variants have a substantial impact on genomic variation. Inversion polymorphisms represent a significant class of structural variant, and despite the challenges in their detection, data on inversions in the human genome are increasing rapidly. Statistical methods for inferring parameters such as the recombination rate and the selection coefficient have generally been developed without accounting for the presence of inversions.

View Article and Find Full Text PDF

There are many known examples of multiple semi-independent associations at individual loci; such associations might arise either because of true allelic heterogeneity or because of imperfect tagging of an unobserved causal variant. This phenomenon is of great importance in monogenic traits but has not yet been systematically investigated and quantified in complex-trait genome-wide association studies (GWASs). Here, we describe a multi-SNP association method that estimates the effect of loci harboring multiple association signals by using GWAS summary statistics.

View Article and Find Full Text PDF

The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach.

View Article and Find Full Text PDF

Systematic nonrandom mating in populations results in genetic stratification and is predominantly caused by geographic separation, providing the opportunity to infer individuals' birthplace from genetic data. Such inference has been demonstrated for individuals' country of birth, but here we use data from the Northern Finland Birth Cohort 1966 (NFBC1966) to investigate the characteristics of genetic structure within a population and subsequently develop a method for inferring location to a finer scale. Principal component analysis (PCA) shows that while the first PCs are particularly informative for location, there is also location information in the higher-order PCs, but it cannot be captured by a linear model.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function.

View Article and Find Full Text PDF

Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC).

View Article and Find Full Text PDF

Summary: Inversions are a common form of structural variation, which may have a marked effect on the genome and methods to infer quantities of interest such as those relating to population structure and natural selection. However, due to the challenge in detecting inversions, little is presently known about their impact. Software to simulate inversions could be used to provide a better understanding of how to detect and account for them; but while there are several software packages for simulating population genetic data, none incorporate inversion polymorphisms.

View Article and Find Full Text PDF