Warming sea-surface temperature has led to an increase in the prevalence of Vibrio species in marine environments. This can be observed particularly in temperate regions where conditions for their growth has become more favourable. The increased prevalence of pathogenic Vibrio species has resulted in a worldwide surge of Vibriosis infections in human and aquatic animals.
View Article and Find Full Text PDFThe viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. We investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently become resuscitated.
View Article and Find Full Text PDFThe formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that 11168H forms persister cells at a frequency of 10 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence.
View Article and Find Full Text PDFis the lead causative agent for seafood-borne human gastroenteritis. While its occurrence has traditionally been uncommon in Europe and the United Kingdom, rising sea surface temperatures have resulted in an increased prevalence. Here, we present the complete genome sequences of four novel strains isolated in the United Kingdom.
View Article and Find Full Text PDFA putative biosynthetic mechanism for selenium nanoparticles (SeNPs) and efficient reduction of selenite (SeO) in the bacterial strain Stenotrophomonas maltophilia SeITE02 are addressed here on the basis of information gained by a combined approach relying on a set of physiological, chemical/biochemical, microscopy, and proteomic analyses. S. maltophilia SeITE02 is demonstrated to efficiently transform selenite into elemental selenium (Se°) by reducing 100% of 0.
View Article and Find Full Text PDFNoninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells.
View Article and Find Full Text PDFStenotrophomonas maltophilia strain SeITE02 was isolated from the rhizosphere of the selenium-hyperaccumulating legume Astragalus bisculcatus. In this report, we provide the 4.56-Mb draft genome sequence of S.
View Article and Find Full Text PDFBackground: Selenite (SeO32-) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32- to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics.
View Article and Find Full Text PDFBurkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate.
View Article and Find Full Text PDFThe twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B.
View Article and Find Full Text PDFBacterial anaerobic respiration using selenium oxyanions as the sole electron acceptor primarily result in the precipitation of selenium biominerals observed as either intracellular or extracellular selenium deposits. Although a better understanding of the enzymology of bacterial selenate reduction is emerging, the processes by which the selenium nanospheres are constructed, and in some cases secreted, has remained poorly studied. Thauera selenatis is a Gram-negative betaproteobacterium that is capable of respiring selenate due to the presence of a periplasmic selenate reductase (SerABC).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2011
During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this protein have demonstrated that it is up-regulated and secreted in response to increasing selenite concentrations.
View Article and Find Full Text PDFBacterial cellular metabolism is renowned for its metabolic diversity and adaptability. However, certain environments present particular challenges. Aerobic metabolism of highly reduced carbon substrates by soil bacteria such as Paracoccus pantotrophus presents one such challenge since it may result in excessive electron delivery to the respiratory redox chain when compared with the availability of terminal oxidant, O2.
View Article and Find Full Text PDFSelenate reductase (SER) from Thauera selenatis is a member of a distinct class of the TAT-translocated type II molybdoenzymes and is closely related to a group of thermostable nitrate reductases (pNAR) found in hyperthermophilic archaea. In the present study the thermostable and thermo-active properties of SER, isolated with either molybdenum (Mo) or tungsten (W) at the active site, are reported. Results show that the purified Mo-SER complex is stable and active upon heat-shock incubation for 10 min at temperatures up to 60 °C.
View Article and Find Full Text PDFSelenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported.
View Article and Find Full Text PDFMetal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases.
View Article and Find Full Text PDFThe present study investigated the role of selenium in the regulation of pancreatic beta-cell function. Utilising the mouse beta-cell line Min6, we have shown that selenium specifically upregulates Ipf1 (insulin promoter factor 1) gene expression, activating the -2715 to -1960 section of the Ipf1 gene promoter. Selenium increased both Ipf1 and insulin mRNA levels in Min6 cells and stimulated increases in insulin content and insulin secretion in isolated primary rat islets of Langerhans.
View Article and Find Full Text PDFEnterobacter cloacae SLD1a-1 is capable of the complete reduction of selenate to selenium and the initial reaction is catalysed by a membrane-bound selenate reductase. In the present study, continuous culture experiments were employed to investigate the possibility that selenate reduction, via the selenate reductase, might provide sufficient energy to maintain cell viability when deprived of the preferred anaerobic terminal electron acceptor nitrate. The evidence presented indicates that the selenate reductase supports slow growth that retards the wash-out of the culture when switching to nitrate-depleted selenate-rich medium, and provides a proton motive force for sustained cell maintenance.
View Article and Find Full Text PDFMany species of Bacteria and Archaea respire nitrate using a molybdenum-dependent membrane-bound respiratory system called Nar. Classically, the 'Bacterial' Nar system is oriented such that nitrate reduction takes place on the inside of this membrane. However, the active site subunit of the 'Archaeal' Nar systems has a twin arginine ('RR') motif, which is a suggestion of translocation to the outside of the cytoplasmic membrane.
View Article and Find Full Text PDFPeriplasmic SER (selenate reductase) from Thauera selenatis is classified as a member of the Tat (twin-arginine translocase)-translocated (Type II) molybdoenzymes and comprises three subunits each containing redox cofactors. Variable-temperature X-band EPR spectra of the purified SER complex showed features attributable to centres [3Fe-4S]1+, [4Fe-4S]1+, Mo(V) and haem-b. EPR-monitored redox-potentiometric titration of the SerABC complex (SerA-SerB-SerC, a hetero-trimetric complex of alphabetagamma subunits) revealed that the [3Fe-4S] cluster (FS4, iron-sulfur cluster 4) titrated as n=1 Nernstian component with a midpoint redox potential (E(m)) of +118+/-10 mV for the [3Fe-4S]1+/0 couple.
View Article and Find Full Text PDFThe Escherichia coli NapA (periplasmic nitrate reductase) contains a [4Fe-4S] cluster and a Mo-bis-molybdopterin guanine dinucleotide cofactor. The NapA holoenzyme associates with a di-heme c-type cytochrome redox partner (NapB). These proteins have been purified and studied by spectropotentiometry, and the structure of NapA has been determined.
View Article and Find Full Text PDFThe purification of small quantities of a major small c-type cytochrome from the anammox bacterium Kuenenia stuttgartiensis has recently been reported. In order to characterise this protein further we have expressed the gene encoding this cytochrome in Escherichia coli and have purified the protein to homogeneity. The protein is directed to the E.
View Article and Find Full Text PDFThe membrane-bound selenate reductase of Enterobacter cloacae SLD1a-1 is purified in low yield and has relatively low activity in the pure form compared to that of other oxyanion reductases, such as the membrane-bound and periplasmic nitrate reductases. A microtiter plate assay based on the original quartz cuvette viologen assay of Jones and Garland (R.W.
View Article and Find Full Text PDFEnterobacter cloacae SLD1a-1 is capable of reductive detoxification of selenate to elemental selenium under aerobic growth conditions. The initial reductive step is the two-electron reduction of selenate to selenite and is catalyzed by a molybdenum-dependent enzyme demonstrated previously to be located in the cytoplasmic membrane, with its active site facing the periplasmic compartment (C. A.
View Article and Find Full Text PDFRhodobacter capsulatus cytochrome c' (RCCP) has been overexpressed in Escherichia coli, and its spectroscopic and ligand-binding properties have been investigated. It is concluded that the heterologously expressed protein is assembled correctly, as judged by UV-vis absorption, EPR, and resonance Raman (RR) spectroscopy of the unligated protein as well as forms in which the heme is ligated by CO or NO. To probe the oligomerization state of RCCP and its potential influence on heme reactivity, we have compared the properties of wild-type RCCP with a mutant (K42E) that lacks a salt bridge at the subunit interface.
View Article and Find Full Text PDF