Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression.
View Article and Find Full Text PDFNew approach methodologies (NAMs) that efficiently provide information about chemical hazard without using whole animals are needed to accelerate the pace of chemical risk assessments. Technological advancements in gene expression assays have made in vitro high-throughput transcriptomics (HTTr) a feasible option for NAMs-based hazard characterization of environmental chemicals. In this study, we evaluated the Templated Oligo with Sequencing Readout (TempO-Seq) assay for HTTr concentration-response screening of a small set of chemicals in the human-derived MCF7 cell model.
View Article and Find Full Text PDF