Stomata are controllable micropores formed between two adjacent guard cells (GCs) that regulate gas flow across the plant surface. Grasses, among the most successful organisms on the planet and the main food crops for humanity, have GCs flanked by specialized lateral subsidiary cells (SCs). SCs improve performance by acting as a local pool of ions and metabolites to drive changes in turgor pressure within the GCs that open/close the stomatal pore.
View Article and Find Full Text PDFDuring morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode.
View Article and Find Full Text PDFStomata regulate plant water use and photosynthesis by controlling leaf gas exchange. They do this by reversibly opening the pore formed by two adjacent guard cells, with the limits of this movement ultimately set by the mechanical properties of the guard cell walls and surrounding epidermis. A body of evidence demonstrates that the methylation status and cellular patterning of pectin wall polymers play a core role in setting the guard cell mechanical properties, with disruption of the system leading to poorer stomatal performance.
View Article and Find Full Text PDFDuring epithelial morphogenesis, force generation at the cellular level not only causes cell deformation, but may also produce coordinated cell movement and rearrangement on the tissue level. In this paper, we use a novel three-dimensional vertex model to explore the roles of cellular forces during the formation of the salivary gland in theembryo. Representing the placode as an epithelial sheet of initially columnar cells, we focus on the spatial and temporal patterning of contractile forces due to three actomyosin pools: the apicomedial actomyosin in the pit of the placode, junctional actomyosin arcs outside the pit, and a supracellular actomyosin cable along the circumference of the placode.
View Article and Find Full Text PDFWe present a vertex-based model for Drosophila dorsal closure that predicts the mechanics of cell oscillation and contraction from the dynamics of the PAR proteins. Based on experimental observations of how aPKC, Par-6, and Bazooka translocate from the circumference of the apical surface to the medial domain, and how they interact with each other and ultimately regulate the apicomedial actomyosin, we formulate a system of differential equations that captures the key features of dorsal closure, including distinctive behaviors in its early, slow, and fast phases. The oscillation in cell area in the early phase of dorsal closure results from an intracellular negative feedback loop that involves myosin, an actomyosin regulator, aPKC, and Bazooka.
View Article and Find Full Text PDF