Publications by authors named "Clint Schow"

We report the first O-band link with electrically reconfigurable intensity-modulation direct-detection (IMDD) and coherent operation using custom silicon photonic chips packaged with commercial electronic chips. Transmission below the KP4-FEC threshold is shown using commercial 53 Gbaud PAM4 digital signal processing (DSP) for 16QAM (200 Gbps/λ) and PAM4 (100 Gbps/λ). Efficient operation of the packaged full link at 12 and 11.

View Article and Find Full Text PDF

Coherent optical links are becoming increasingly attractive for intra-data center applications as data rates scale. Realizing the era of high-volume short-reach coherent links will require substantial improvements in transceiver cost and power efficiency, necessitating a reassessment of conventional architectures best-suited for longer-reach links and a review of assumptions for shorter-reach implementations. In this work, we analyze the impact of integrated semiconductor optical amplifiers (SOAs) on link performance and power consumption, and describe the optimal design spaces for low-cost and energy-efficient coherent links.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an elastic multi-wavelength selective switch that can switch between two wavelengths at each crosspoint.
  • The switch was created using a silicon photonics foundry and features a tuning range of 17 nm with an average path loss reduced to 2.43 dB, representing a significant 70% improvement from earlier designs.
  • High-speed data transmission was successfully demonstrated, achieving 111 Gbps using pulse-amplitude modulation over various switch paths.
View Article and Find Full Text PDF

Here we demonstrate an 8x4 multi-wavelength selective ring resonator based crossbar switch matrix implemented in a 220-nm silicon photonics foundry for interconnecting electronic packet switches in scalable data centers. This switch design can dynamically assign up to two wavelength channels for any port-port connection, providing almost full connectivity with significant reduction in latency, cost and complexity. The switch unit cell insertion loss was measured at 0.

View Article and Find Full Text PDF

We present an on-chip wavelength reference with a partial drop ring resonator and germanium photodetector. This approach can be used in ring-resonator-based wavelength-selective switches where absolute wavelength alignment is required. We use the temperature dependence of heater resistance as a temperature sensor.

View Article and Find Full Text PDF

In this paper, we demonstrate that forward bias (+0.9V) of a high-speed silicon (Si) optical Mach-Zehnder modulator (MZM) increases the radio-frequency (RF) link gain by 30 dB when compared to reverse bias operation (-8V). RF applications require tunable, narrowband electro-optic conversion with high gain to mitigate noise of the optical receiver and realize high RF spur-free dynamic range.

View Article and Find Full Text PDF

We present the design and characterization of a novel electro-optic silicon photonic 2×2 nested Mach-Zehnder switch monolithically integrated with a CMOS driver and interface logic. The photonic device uses a variable optical attenuator in order to balance the power inside the Mach-Zehnder interferometer leading to ultralow crosstalk performance. We measured a crosstalk as low as -34.

View Article and Find Full Text PDF

We report an 850-nm vertical cavity surface emitting laser (VCSEL)-based optical link that achieves a new record in speed. The laser driver and receiver ICs are fabricated in standard 90-nm bulk CMOS, and the optoelectronic devices are commercial components. Operation at 30 Gb/s with a bit-error rate < 10(-12) is achieved, representing to the authors' knowledge the highest speed reported to date for a CMOS-based full optical link.

View Article and Find Full Text PDF

The performance of a receiver based on a CMOS amplifier circuit designed with 90nm ground rules wire-bonded to a waveguide germanium photodetector is characterized at data rates up to 40Gbps. Both chips were fabricated through the IBM Silicon CMOS Integrated Nanophotonics process on specialty photonics-enabled SOI wafers. At the data rate of 28Gbps which is relevant to the new generation of optical interconnects, a sensitivity of -7.

View Article and Find Full Text PDF

We present a 4x4 spatially non-blocking Mach-Zehnder based silicon optical switch fabricated using processes fully compatible with standard CMOS. We successfully demonstrate operation in all 9 unique switch states and 12 possible I/O routing configurations, with worst-case cross-talk levels lower than -9 dB, and common spectral bandwidth of 7 nm. High-speed 40 Gbps data transmission experiments verify optical data integrity for all input-output channels.

View Article and Find Full Text PDF