Publications by authors named "Clifton D McKee"

SARS-CoV-2 superspreading occurs when transmission is highly efficient and/or an individual infects many others, contributing to rapid spread. To better quantify heterogeneity in SARS-CoV-2 transmission, particularly superspreading, we performed a systematic review of transmission events with data on secondary attack rates or contact tracing of individual index cases published before September 2021 prior to the emergence of variants of concern and widespread vaccination. We reviewed 592 distinct events and 9,883 index cases from 491 papers.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate forecasts improve public health responses to seasonal influenza, with 26 teams providing predictions for hospital admissions in 2021-22 and 2022-23.
  • Six out of 23 models performed better than the baseline in 2021-22, while 12 out of 18 models did so in 2022-23, with the FluSight ensemble being highly ranked in both seasons.
  • Despite its accuracy, the FluSight ensemble and other models struggled with longer forecast periods, especially during times of rapid change in influenza patterns.
View Article and Find Full Text PDF

Few studies have examined the genetic population structure of vector-borne microparasites in wildlife, making it unclear how much these systems can reveal about the movement of their associated hosts. This study examined the complex host–vector–microbe interactions in a system of bats, wingless ectoparasitic bat flies (Nycteribiidae), vector-borne microparasitic bacteria () and bacterial endosymbionts of flies () across an island chain in the Gulf of Guinea, West Africa. Limited population structure was found in bat flies and symbionts compared to that of their hosts.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 is still a major public health issue in the U.S., with projected hospitalizations and deaths over the next two years varying based on assumptions about immune escape and vaccine recommendations.
  • Researchers used modeling to create six different scenarios combining levels of immune escape (20% and 50% per year) and CDC vaccination recommendations for different age groups.
  • In the worst-case scenario (high immune escape and no vaccination), COVID-19 could lead to over 2.1 million hospitalizations and around 209,000 deaths, while targeted vaccinations for seniors could significantly reduce these numbers.
View Article and Find Full Text PDF

Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. Forecasting teams were asked to provide national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one through four weeks ahead for the 2021-22 and 2022-23 influenza seasons. Across both seasons, 26 teams submitted forecasts, with the submitting teams varying between seasons.

View Article and Find Full Text PDF

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.

View Article and Find Full Text PDF

Bats harbor diverse intracellular Bartonella bacteria, but there is limited understanding of the factors that influence transmission over time. Investigation of Bartonella dynamics in bats could reveal general factors that control transmission of multiple bat-borne pathogens, including viruses. We used molecular methods to detect Bartonella DNA in paired bat (Pteropus medius) blood and bat flies in the family Nycteribiidae collected from a roost in Faridpur, Bangladesh between September 2020 and January 2021.

View Article and Find Full Text PDF

Knowledge of the dynamics and genetic diversity of Nipah virus circulating in bats and at the human-animal interface is limited by current sampling efforts, which produce few detections of viral RNA. We report a series of investigations at Pteropus medius bat roosts identified near the locations of human Nipah cases in Bangladesh during 2012-2019. Pooled bat urine was collected from 23 roosts; 7 roosts (30%) had >1 sample in which Nipah RNA was detected from the first visit.

View Article and Find Full Text PDF

The public health crisis created by the COVID-19 pandemic has spurred a deluge of scientific research aimed at informing the public health and medical response to the pandemic. However, early in the pandemic, those working in frontline public health and clinical care had insufficient time to parse the rapidly evolving evidence and use it for decision-making. Academics in public health and medicine were well-placed to translate the evidence for use by frontline clinicians and public health practitioners.

View Article and Find Full Text PDF

Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of roosts, and patterns of land-use change in Bangladesh over the last 300 years.

View Article and Find Full Text PDF

Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats.

View Article and Find Full Text PDF

Many pathogens infect multiple hosts, and spillover from domestic to wild species poses a significant risk of spread of diseases that threaten wildlife and humans. Documentation of cross-species transmission, and unraveling the mechanisms that drive it, remains a challenge. Focusing on co-occurring domestic and wild felids, we evaluate possible transmission mechanisms and evidence of spillover of " (), an erythrocytic bacterial parasite of cats.

View Article and Find Full Text PDF

Few studies have been able to provide experimental evidence of the ability of fleas to maintain rodent-associated Bartonella infections and excrete these bacteria. These data are important for understanding the transmission cycles and prevalence of these bacteria in hosts and vectors. We used an artificial feeding approach to expose groups of the oriental rat flea (Xenopsylla cheopis Rothschild; Siphonaptera, Pulicidae) to rat blood inoculated with varying concentrations of Bartonella elizabethae Daly (Bartonellaceae: Rhizobiales).

View Article and Find Full Text PDF

Risk-based sampling is an essential component of livestock health surveillance because it targets resources towards sub-populations with a higher risk of infection. Risk-based surveillance in U.S.

View Article and Find Full Text PDF

Bat bugs (Cimex adjunctus Barber) (Hemiptera: Cimicidae) collected from big brown bats (Eptesicus fuscus Palisot de Beauvoir) in Colorado, United States were assessed for the presence of Bartonella, Brucella, and Yersinia spp. using molecular techniques. No evidence of Brucella or Yersinia infection was found in the 55 specimens collected; however, 4/55 (7.

View Article and Find Full Text PDF

Bartonellae are phylogenetically diverse, intracellular bacteria commonly found in mammals. Previous studies have demonstrated that bats have a high prevalence and diversity of Bartonella infections globally. Isolates (n = 42) were obtained from five bat species in four provinces of Thailand and analyzed using sequences of the citrate synthase gene (gltA).

View Article and Find Full Text PDF

The influence of factors contributing to parasite diversity in individual hosts and communities are increasingly studied, but there has been less focus on the dominant processes leading to parasite diversification. Using bartonella infections in bats as a model system, we explored the influence of three processes that can contribute to bartonella diversification and lineage formation: (1) spatial correlation in the invasion and transmission of bartonella among bats (phylogeography); (2) divergent adaptation of bartonellae to bat hosts and arthropod vectors; and (3) evolutionary codivergence between bats and bartonellae. Using a combination of global fit techniques and ancestral state reconstruction, we found that codivergence appears to be the dominant process leading to diversification of bartonella in bats, with lineages of bartonellae corresponding to separate bat suborders, superfamilies, and families.

View Article and Find Full Text PDF

Bartonellae are facultative intracellular bacteria and are highly adapted to their mammalian host cell niches. Straw-colored fruit bats (Eidolon helvum) are commonly infected with several bartonella strains. To elucidate the genetic diversity of these bartonella strains, we analyzed 79 bartonella isolates from straw-colored fruit bats in seven countries across Africa (Cameroon, Annobon island of Equatorial Guinea, Ghana, Kenya, Nigeria, Tanzania, and Uganda) using a multi-locus sequencing typing (MLST) approach based on nucleotide sequences of eight loci (ftsZ, gltA, nuoG, ribC, rpoB, ssrA, ITS, and 16S rRNA).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqsaspk4q554p5rdka5bmmns1pha24a2v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once