Publications by authors named "Clifford Weil"

Quantifying the digestibility of proteins in cereal grain is important for assessing and improving the nutritional quality of the grain after ingestion. This trait is particularly important for sorghum since the grain protein is known to be less digestible after wet cooking compared to other cereals. The reduced digestibility contributes to malnutrition in regions where sorghum is consumed as a staple food.

View Article and Find Full Text PDF

The precise detection of causal DNA mutations (deoxyribonucleic acid) is very crucial for forward genetic studies. Several sources of errors contribute to false-positive detections by current variant-calling algorithms, which impact associating phenotypes with genotypes. To improve the accuracy of mutation detection, we implemented a binning method for the accurate detection of likely ethyl methanesulfonate (EMS)-induced mutations in a sequenced mutant population.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) regulates the movement of macromolecules between the nucleus and cytoplasm. Dysfunction of many components of the NPC results in human genetic diseases, including triple A syndrome (AAAS) as a result of mutations in ALADIN. Here, we report a nonsense mutation in the maize ortholog, aladin1 (ali1-1), at the orthologous amino acid residue of an AAAS allele from humans, alters plant stature, tassel architecture, and asymmetric divisions of subsidiary mother cells (SMCs).

View Article and Find Full Text PDF

Seven novel alleles of SBEIIb and one allele of SSIIa co-segregated with the ASV phenotype and contributed to distinct starch quality traits important for food-processing applications. Sorghum is an important food crop for millions of people in Africa and Asia. Whole-genome re-sequencing of sorghum EMS mutants exhibiting an alkali spreading value (ASV) phenotype revealed candidate SNPs in Sobic.

View Article and Find Full Text PDF

To sustain plant growth, development, and crop yield, sucrose must be transported from leaves to distant parts of the plant, such as seeds and roots. To identify genes that regulate sucrose accumulation and transport in maize (Zea mays), we isolated carbohydrate partitioning defective33 (cpd33), a recessive mutant that accumulated excess starch and soluble sugars in mature leaves. The cpd33 mutants also exhibited chlorosis in the leaf blades, greatly diminished plant growth, and reduced fertility.

View Article and Find Full Text PDF

The accurate detection of induced mutations is critical for both forward and reverse genetics studies. Experimental chemical mutagenesis induces relatively few single base changes per individual. In a complex eukaryotic genome, false positive detection of mutations can occur at or above this mutagenesis rate.

View Article and Find Full Text PDF

Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared.

View Article and Find Full Text PDF

The transposases of DNA transposable elements catalyze the excision of the element from the host genome, but are not involved in the repair of the resulting double-strand break. To elucidate the role of various host DNA repair and damage response proteins in the repair of the hairpin-ended double strand breaks (DSBs) generated during excision of the maize Ac element in Arabidopsis thaliana, we deep-sequenced hundreds of thousands of somatic excision products from a variety of repair- or response-defective mutants. We find that each of these repair/response defects negatively affects the preservation of the ends, resulting in an enhanced frequency of deletions, insertions, and inversions at the excision site.

View Article and Find Full Text PDF

A recent study by Zhang and colleagues published in the March 15, 2009, issue of Genes & Development (pp. 755-765) demonstrates that maize Ac/Ds transposons mediate translocations and other rearrangements through aberrant execution of the normal transposition process. Ac transposase uses one end from each of two neighboring elements in these events, which may happen more commonly than previously thought.

View Article and Find Full Text PDF

The Mre11 complex functions in double-strand break (DSB) repair, meiotic recombination, and DNA damage checkpoint pathways. Sae2 deficiency has opposing effects on the Mre11 complex. On one hand, it appears to impair Mre11 nuclease function in DNA repair and meiotic DSB processing, and on the other, Sae2 deficiency activates Mre11-complex-dependent DNA-damage-signaling via the Tel1-Mre11 complex (TM) pathway.

View Article and Find Full Text PDF

Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host.

View Article and Find Full Text PDF

The ability of plants to repair DNA double-strand breaks (DSBs) is essential for growth and fertility. The Arabidopsis DSB repair proteins AtRAD50 and AtMRE11 form part of an evolutionarily conserved complex that, in Saccharomyces cerevisiae and mammals, includes a third component termed XRS2 and NBS1, respectively. The MRN complex (MRX in yeast) has a direct role in DSB repair and is also required for DNA damage signaling and checkpoint activation in a pathway mediated by the protein kinase ATM.

View Article and Find Full Text PDF

The Tc1/mariner transposable element superfamily is widely distributed in animal and plant genomes. However, no active plant element has been previously identified. Nearly identical copies of a rice (Oryza sativa) Tc1/mariner element called Osmar5 in the genome suggested potential activity.

View Article and Find Full Text PDF

Finding a way to identify point mutants for a genome in which there are six copies of every gene seems a daunting task, however this has recently been reported. In this research, the redundancy in the wheat genome proved a help instead of a hindrance and the results suggest a promising approach in functional genomics of polyploid crop species. It is now feasible to generate point mutations in all the homologs for a particular gene directly in a polypoid commercial crop variety and then combine them, thus avoiding undesirable, linked traits that often complicate introgressing traits into crops from wild relatives.

View Article and Find Full Text PDF

Background: Going from a gene sequence to its function in the context of a whole organism requires a strategy for targeting mutations, referred to as reverse genetics. Reverse genetics is highly desirable in the modern genomics era; however, the most powerful methods are generally restricted to a few model organisms. Previously, we introduced a reverse-genetic strategy with the potential for general applicability to organisms that lack well-developed genetic tools.

View Article and Find Full Text PDF

The maize, cut-and-paste transposon Ac/Ds is mobile in Saccharomyces cerevisiae, and DNA sequences of repair products provide strong genetic evidence that hairpin intermediates form in host DNA during this transposition, similar to those formed for V(D)J coding joints in vertebrates. Both DNA strands must be broken for Ac/Ds to excise, suggesting that double-strand break (DSB) repair pathways should be involved in repair of excision sites. In the absence of homologous template, as expected, Ac excisions are repaired by nonhomologous end joining (NHEJ) that can involve microhomologies close to the broken ends.

View Article and Find Full Text PDF