We point out the existence of a new general relativistic contribution to the perihelion advance of Mercury that, while smaller than the contributions arising from the solar quadrupole moment and angular momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in part from relativistic "crossterms" in the post-Newtonian equations of motion between Mercury's interaction with the Sun and with the other planets, and in part from an interaction between Mercury's motion and the gravitomagnetic field of the moving planets. At a few parts in 10^{6} of the leading general relativistic precession of 42.
View Article and Find Full Text PDFThe status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2011
The post-Newtonian approximation is a method for solving Einstein's field equations for physical systems in which motions are slow compared to the speed of light and where gravitational fields are weak. Yet it has proven to be remarkably effective in describing certain strong-field, fast-motion systems, including binary pulsars containing dense neutron stars and binary black hole systems inspiraling toward a final merger. The reasons for this effectiveness are largely unknown.
View Article and Find Full Text PDFPhys Rev Lett
February 2009
For a test body orbiting an axisymmetric body in Newtonian gravitational theory with mass m and multiple moments Q_{l} (and for a charge in orbit about a charge distribution with the same multipole moments) we show that there exists, in addition to the energy and angular momentum component along the symmetry axis, a conserved quantity analogous to the Carter constant of Kerr spacetimes for rotating black holes in general relativity, if the odd-l moments vanish, and the even-l moments satisfy Q_{2l}=m(Q_{2}/m);{l}. Strangely, this is precisely the relation among mass moments enforced by the no-hair theorems of rotating black holes. By contrast, if Newtonian gravity is supplemented by a multipolar gravitomagnetic field, whose leading term represents frame dragging, we are unable to find an analogous Carter-like constant.
View Article and Find Full Text PDFThe status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity.
View Article and Find Full Text PDFThe status of experimental tests of general relativity and of theoretical frameworks for analysing them are reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law will search for new interactions arising from unification or quantum gravity.
View Article and Find Full Text PDF