The control of antiferromagnets with ultrashort optical pulses has emerged as a prominent field of research. Tailored laser excitation can launch coherent spin waves at terahertz frequencies, yet a comprehensive description of their generation mechanisms is still lacking despite extensive efforts. Using terahertz emission spectroscopy, we investigate the generation of a coherent magnon mode in the van der Waals antiferromagnet NiPS_{3} under a range of photoexcitation conditions.
View Article and Find Full Text PDFCollective excitations of bound electron-hole pairs-known as excitons-are ubiquitous in condensed matter, emerging in systems as diverse as band semiconductors, molecular crystals, and proteins. Recently, their existence in strongly correlated electron materials has attracted increasing interest due to the excitons' unique coupling to spin and orbital degrees of freedom. The non-equilibrium driving of such dressed quasiparticles offers a promising platform for realizing unconventional many-body phenomena and phases beyond thermodynamic equilibrium.
View Article and Find Full Text PDF