Reference dosimetry measurement in a pencil beam scanning system can exhibit dose fluctuation due to intra-spill spot positional drift. This results in a noisy reference dosimetry measurement against energy which could introduce errors in monitor unit calibration. The aim of this study is to investigate the impact of smoothing the reference dosimetry measurements on the type A uncertainty.
View Article and Find Full Text PDFBackground And Purpose: Despite the superior dose conformity of proton therapy, the dose distribution is sensitive to daily anatomical changes, which can affect treatment accuracy. This study evaluated the dose recalculation accuracy of two synthetic computed tomography (sCT) generation algorithms in a commercial treatment planning system.
Materials And Methods: The evaluation was conducted for head-and-neck, thorax-and-abdomen, and pelvis sites treated with proton therapy.
Technol Cancer Res Treat
July 2024
Purpose: A daily quality assurance (QA) check in proton therapy is ensuring that the range of each proton beam energy in water is accurate to 1 mm. This is important for ensuring that the tumor is adequately irradiated while minimizing damage to surrounding healthy tissue. It is also important to verify the total charge collected against the beam model.
View Article and Find Full Text PDFThe validation of deformable image registration (DIR) for contour propagation is often done using contour-based metrics. Meanwhile, dose accumulation requires evaluation of voxel mapping accuracy, which might not be accurately represented by contour-based metrics. By fabricating a deformable anthropomorphic pelvis phantom, we aim to (1) quantify the voxel mapping accuracy for various deformation scenarios, in high- and low-contrast regions, and (2) identify any correlation between dice similarity coefficient (DSC), a commonly used contour-based metric, and the voxel mapping accuracy for each organ.
View Article and Find Full Text PDFIntroduction: Real-time gated proton therapy (RGPT) is a motion management technique unique to the Hitachi particle therapy system. It uses pulsed fluoroscopy to track an implanted fiducial marker. There are currently no published guidelines on how to conduct the commissioning and quality assurance.
View Article and Find Full Text PDFIntroduction: Daily quality assurance is an integral part of a radiotherapy workflow to ensure the dose is delivered safely and accurately to the patient. It is performed before the first treatment of the day and needs to be time and cost efficient for a multiple gantries proton center. In this study, we introduced an efficient method to perform QA for output constancy, range verification, spot positioning accuracy and imaging and proton beam isocenter coincidence with DailyQA3.
View Article and Find Full Text PDFBackground And Purpose: This work introduces the first assessment of CT calibration following the ESTRO's consensus guidelines and validating the HLUT through the irradiation of biological material.
Methods: Two electron density phantoms were scanned with two CT scanners using two CT scan energies. The stopping power ratio (SPR) and mass density (MD) HLUTs for different CT scan energies were derived using Schneider's and ESTRO's methods.
Phys Imaging Radiat Oncol
January 2024
Background And Purpose: High-density dental fillings pose a non-negligible impact on head and neck cancer treatment. For proton therapy, stopping power ratio (SPR) prediction will be significantly impaired by the associated image artifacts. Dose perturbation is also inevitable, compromising the treatment plan quality.
View Article and Find Full Text PDFBackground: Tolerance limit is defined on pre-treatment patient specific quality assurance results to identify "out of the norm" dose discrepancy in plan. An out-of-tolerance plan during measurement can often cause treatment delays especially if replanning is required. In this study, we aim to develop an outlier detection model to identify out-of-tolerance plan early during treatment planning phase to mitigate the above-mentioned risks.
View Article and Find Full Text PDFObjective: This work aims to use machine learning models to predict gamma passing rate of portal dosimetry quality assurance with log file derived features. This allows daily treatment monitoring for patients and reduce wear and tear on EPID detectors to save cost and prevent downtime.
Methods: 578 VMAT trajectory log files selected from prostate, lung and spine SBRT were used in this work.
This paper aims to review on fetal dose in radiotherapy and extends and updates on a previous work to include proton therapy. Out-of-field doses, which are the doses received by regions outside of the treatment field, are unavoidable regardless of the treatment modalities used during radiotherapy. In the case of pregnant patients, fetal dose is a major concern as it has long been recognized that fetuses exposed to radiation have a higher probability of suffering from adverse effects such as anatomical malformations and even fetal death, especially when the 0.
View Article and Find Full Text PDFBackgrounds: Respiratory gating is one of the motion management techniques that is used to deliver radiation dose to a tumor at a specific position under free breathing. However, due to the dynamic feedback process of this approach, regular equipment quality assurance (QA) and patient-specific QA checks need to be performed. This work proposes a new QA methodology using electronic portal imaging detector (EPID) to determine the target localization accuracy of phase gating.
View Article and Find Full Text PDF