Publications by authors named "Clifford A Shaffer"

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose.

View Article and Find Full Text PDF

The growing size and complexity of molecular network models makes them increasingly difficult to construct and understand. Modifying a model that consists of tens of reactions is no easy task. Attempting the same on a model containing hundreds of reactions can seem nearly impossible.

View Article and Find Full Text PDF

Biologists seek to create increasingly complex molecular regulatory network models. Writing such a model is a creative effort that requires flexible analysis tools and better modeling languages than offered by many of today's biochemical model editors. Our Multistate Model Builder (MSMB) supports multistate models created using different modeling styles that suit the modeler rather than the software.

View Article and Find Full Text PDF

Parameter estimation in discrete or continuous deterministic cell cycle models is challenging for several reasons, including the nature of what can be observed, and the accuracy and quantity of those observations. The challenge is even greater for stochastic models, where the number of simulations and amount of empirical data must be even larger to obtain statistically valid parameter estimates. The two main contributions of this work are (1) stochastic model parameter estimation based on directly matching multivariate probability distributions, and (2) a new quasi-Newton algorithm class QNSTOP for stochastic optimization problems.

View Article and Find Full Text PDF

Background: Most biomolecular reaction modeling tools allow users to build models with a single list of parameter values. However, a common scenario involves different parameterizations of the model to account for the results of related experiments, for example, to define the phenotypes for a variety of mutations (gene knockout, over expression, etc.) of a specific biochemical network.

View Article and Find Full Text PDF

Background: Building models of molecular regulatory networks is challenging not just because of the intrinsic difficulty of describing complex biological processes. Writing a model is a creative effort that calls for more flexibility and interactive support than offered by many of today's biochemical model editors. Our model editor MSMB - Multistate Model Builder - supports multistate models created using different modeling styles.

View Article and Find Full Text PDF

The eukaryotic cell cycle is regulated by a complicated chemical reaction network. Although many deterministic models have been proposed, stochastic models are desired to capture noise in the cell resulting from low numbers of critical species. However, converting a deterministic model into one that accurately captures stochastic effects can result in a complex model that is hard to build and expensive to simulate.

View Article and Find Full Text PDF

Models of regulatory networks become more difficult to construct and understand as they grow in size and complexity. Large models are usually built up from smaller models, representing subsets of reactions within the larger network. To assist modelers in this composition process, we present a formal approach for model composition, a wizard-style program for implementing the approach, and suggested language extensions to the Systems Biology Markup Language to support model composition.

View Article and Find Full Text PDF

Motivation: Models of regulatory networks become more difficult to construct and understand as they grow in size and complexity. Modelers naturally build large models from smaller components that each represent subsets of reactions within the larger network. To assist modelers in this process, we present model aggregation, which defines models in terms of components that are designed for the purpose of being combined.

View Article and Find Full Text PDF

We demonstrate how to model macromolecular regulatory networks with JigCell and the Parameter Estimation Toolkit (PET). These software tools are designed specifically to support the process typically used by systems biologists to model complex regulatory circuits. A detailed example illustrates how a model of the cell cycle in frog eggs is created and then refined through comparison of simulation output with experimental data.

View Article and Find Full Text PDF

Converting a biochemical reaction network to a set of kinetic rate equations is tedious and error prone. We describe known interface paradigms for inputing models of intracellular regulatory networks: graphical layout (diagrams), wizards, scripting languages, and direct entry of chemical equations. We present the JigCell Model Builder, which allows users to define models as a set of reaction equations using a spreadsheet (an example of direct entry of equations) and outputs model definitions in the Systems Biology Markup Language, Level 2.

View Article and Find Full Text PDF

Summary: We describe the JigCell Model Builder (JCMB), a tool for creating biochemical reaction network models. JCMB is designed for ease of use and its interface uses the standard spreadsheet metaphor. The JigCell Run Manager (JCRM) is a tool for organizing the large collections of simulation runs typically required by reaction network modeling activities.

View Article and Find Full Text PDF

The life of a cell is governed by the physicochemical properties of a complex network of interacting macromolecules (primarily genes and proteins). Hence, a full scientific understanding of and rational engineering approach to cell physiology require accurate mathematical models of the spatial and temporal dynamics of these macromolecular assemblies, especially the networks involved in integrating signals and regulating cellular responses. The Virginia Tech Consortium is involved in three specific goals of DARPA's computational biology program (Bio-COMP): to create effective software tools for modeling gene-protein-metabolite networks, to employ these tools in creating a new generation of realistic models, and to test and refine these models by well-conceived experimental studies.

View Article and Find Full Text PDF