Background: The aim of this study was to examine the potential added value of including neuropsychiatric symptoms (NPS) in machine learning (ML) models, along with demographic features and Alzheimer's disease (AD) biomarkers, to predict decline or non-decline in global and domain-specific cognitive scores among community-dwelling older adults.
Objective: To evaluate the impact of adding NPS to AD biomarkers on ML model accuracy in predicting cognitive decline among older adults.
Methods: The study was conducted in the setting of the Mayo Clinic Study of Aging, including participants aged ≥ 50 years with information on demographics (i.
During the past decade, a conceptual shift occurred in the field of Alzheimer's disease (AD) considering the disease as a continuum. Thanks to evolving biomarker research and substantial discoveries, it is now possible to identify the disease even at the preclinical stage before the occurrence of the first clinical symptoms. This preclinical stage of AD has become a major research focus as the field postulates that early intervention may offer the best chance of therapeutic success.
View Article and Find Full Text PDF