Background: The automatic analysis of medical images has the potential improve diagnostic accuracy while reducing the strain on clinicians. Current methods analyzing 3D-like imaging data, such as computerized tomography imaging, often treat each image slice as individual slices. This may not be able to appropriately model the relationship between slices.
View Article and Find Full Text PDFCoronavirus disease (COVID-19) has caused a worldwide pandemic, putting millions of people's health and lives in jeopardy. Detecting infected patients early on chest computed tomography (CT) is critical in combating COVID-19. Harnessing uncertainty-aware consensus-assisted multiple instance learning (UC-MIL), we propose to diagnose COVID-19 using a new bilateral adaptive graph-based (BA-GCN) model that can use both 2D and 3D discriminative information in 3D CT volumes with arbitrary number of slices.
View Article and Find Full Text PDF