A supercritical chromatographic method for the separation of a drug and its impurities has been developed and optimized applying an experimental design approach and chromatogram simulations. Stationary phase screening was followed by optimization of the modifier and injection solvent composition. A design-of-experiment (DoE) approach was then used to optimize column temperature, back-pressure and the gradient slope simultaneously.
View Article and Find Full Text PDFLinear gradient programs are very frequently used in reversed phase liquid chromatography to enhance the selectivity compared to isocratic separations. Multi-linear gradient programs on the other hand are only scarcely used, despite their intrinsically larger separation power. Because the gradient-conformity of the latest generation of instruments has greatly improved, a renewed interest in more complex multi-segment gradient liquid chromatography can be expected in the future, raising the need for better performing gradient design algorithms.
View Article and Find Full Text PDFPharmaceutical companies are progressively adopting and introducing Process Analytical Technology (PAT) and Quality-by-Design (QbD) concepts promoted by the regulatory agencies, aiming the building of the quality directly into the product by combining thorough scientific understanding and quality risk management. An analytical method based on near infrared (NIR) spectroscopy was developed as a PAT tool to control on-line an API (active pharmaceutical ingredient) manufacturing crystallization step during which the API and residual solvent contents need to be precisely determined to reach the predefined seeding point. An original methodology based on the QbD principles was designed to conduct the development and validation of the NIR method and to ensure that it is fitted for its intended use.
View Article and Find Full Text PDFThe final step of an active pharmaceutical ingredient (API) manufacturing synthesis process consists of a crystallization during which the API and residual solvent contents have to be quantified precisely in order to reach a predefined seeding point. A feasibility study was conducted to demonstrate the suitability of on-line NIR spectroscopy to control this step in line with new version of the European Medicines Agency (EMA) guideline [1]. A quantitative method was developed at laboratory scale using statistical design of experiments (DOE) and multivariate data analysis such as principal component analysis (PCA) and partial least squares (PLS) regression.
View Article and Find Full Text PDFWe report on the possibilities of a new method development (MD) algorithm that searches the chromatographic parameter space by systematically shifting and stretching the elution window over different parts of the time-axis. In this way, the search automatically focuses on the most promising areas of the solution space. Since only the retention properties of the first and last eluting compounds of the sample need to be (approximately) known, the algorithm can be directly applied to samples with unknown composition, and the proposed solutions are not sensitive to any modeling errors.
View Article and Find Full Text PDFIn chiral supercritical fluid chromatography (SFC), mobile-phase additives are often used to improve enantioseparations and peak shapes. An acidic or basic additive is chosen, depending on the nature of the compound. This work highlights the simultaneous use of the acidic additive trifluoroacetic acid (TFA) and the basic additive isopropylamine (IPA) in supercritical fluid chromatography for enantioseparations.
View Article and Find Full Text PDFA variable length method development (or VL-MD)strategy, exploiting the potential of an automatic column coupling system, is proposed and has been applied to a number of different pharmaceutical and environmental samples with a varying degree of complexity. The proposed strategy consistently produced separation methods that had at least an equally good critical pair resolution and an equally short run time to those of methods produced using commercially available MD assistance software. In some cases, the VL-MD strategy allowed the MD time to be drastically shortened from >30 h to an overnight run of only 12 h.
View Article and Find Full Text PDFThe use of ultra-high pressure liquid chromatography (UHPLC) with pressures up to 1000 bar and columns packed with sub-2-microm particles combined with high-temperature mobile phase conditions (up to 90 degrees C) is assessed according to the current available instrumentation via constrained kinetic plot equations. It is shown that the gain in separation speed, theoretically expected from high-temperature UHPLC (HT-UHPLC), is significantly reduced when taking into account the existing instrumental constraints (extra-column band broadening, flow-rate and column length limitations). This study also shows that significant improvements could be expected on the current commercial instruments by increasing the flow-rate limit and/or using packing columns with particle size in the range 2.
View Article and Find Full Text PDFThe present study reports on the exploration of the separation speed limits of RPLC chromatography in open-tubular channels. Applying the shear-driven chromatography principle in a 120-nm deep open channel, and using an improved detection set-up, the separation of three coumarin dyes was detectable 8mm downstream of the injection point. At this distance, separation efficiencies of N = 17,900 - 24,100 plates were obtained at a velocity of 10 mm s(-1), corresponding to a plate generation velocity of 21,100 to 28,300 plates per second for the most and least retained component, respectively.
View Article and Find Full Text PDFThe present paper describes a method for the production of partly porous micro-pillars in columns suitable for use in liquid chromatography. These layers increase the available surface at least two orders of magnitude without destroying the huge benefits of the ordered nature of the system. A process flow was developed that enabled us to create a 550 nm thick porous layer on the pillar array in a sealed channel configuration, withstanding pressures up to at least 70 bar.
View Article and Find Full Text PDFBuilding upon the micromachined column idea proposed by the group of Regnier in 1998, we report on the first high-resolution reversed-phase separations in micromachined pillar array columns under pressure-driven LC conditions. A three component mixture could be separated in 3 s using arrays of nonporous silicon pillars with a diameter of approximately 4.3 microm and an external porosity of 55%.
View Article and Find Full Text PDFA kinetic plot based method has been used to experimentally predict the optimal particle size yielding the maximal isocratic peak capacity in a given analysis time. Applying the method to columns of three different manufacturers and characterizing them by separating a 4-component paraben mixture at 30 degrees C, it was consistently found that the classical 3 and 3.5 microm particles provide the highest peak capacity for typical isocratic separation run times between 30 and 60 min when operating the columns at a conventional pressure of 400 bar.
View Article and Find Full Text PDFUsing a set of experimentally determined plate height data obtained on three commercial high-temperature HPLC supports, and evaluating their isocratic separation speed potential under the application of a set of instrumental constraints, a qualitative map of the practically achievable critical pair separation speed potential of high-temperature HPLC has been established. The obtained data show that the gain in separation speed is more strongly affected by the instrumental limitations in the high-temperature range than it is for the low temperatures. For the presently considered case of alkylbenzene separations, the potential gain in analysis time that can be obtained by going from T=30 to 120 degrees C in the presence of a typical set of instrumental limitations nevertheless remains of the order of a factor of 2-4.
View Article and Find Full Text PDFThe present paper reports on the experimental difficulties encountered when trying to realize the full potential of shear-driven chromatography in nanochannels. While it theoretically offers the possibility to yield over 10,000 plates per centimetre in a few seconds, the practical realization of this potential requires a detector miniaturisation that is carried to the extreme combined with very high sampling rates. In the present study, a charge coupled device camera and a photomultiplier tube combined with pinhole were tested as detector.
View Article and Find Full Text PDFThe present study aimed at mapping the separation speed potential of a critical pair on commercial high-temperature HPLC (HT-HPLC) supports at elevated temperatures. For this purpose, band broadening and pressure drop measurements were conducted on three different commercial HT-HPLC columns operated at various elevated temperatures but by keeping the same retention factor. The plate height data were subsequently transformed into a plot showing the minimal required analysis time needed to yield a given required effective plate number.
View Article and Find Full Text PDFThis paper describes a method to automatically and reproducibly inject sharply delimited sample plugs in the shallow (i.e., sub-micron) channels typically used in shear driven chromatography.
View Article and Find Full Text PDFMaking a theoretical study supported by experiments of the kinetic advantages of increased inlet pressures versus increased external porosity using impedance plots of analysis time versus required plate number, it is found that both approaches more or less have the same effect on the kinetic performance. The need to change a given system to one with an increased inlet pressure or with an increased external porosity can best be assessed from the optimal plate number (N(opt)) of the system. When the pursued application requires a plate number that is larger than N(opt), any increase in inlet pressure and external porosity is beneficial.
View Article and Find Full Text PDFThe present paper reports on an experimental study of the possibility to use a micro-machined detection groove to enhance the detection sensitivity in flat-rectangular nano-channels for ultra-rapid liquid chromatography separations. Transversally running detection grooves with three different axial widths (respectively, 2, 4 and 6 microm) and one depth (4.75 microm) were tested in glass and silicon channels for the whole range of detectable fluorescein isothiocyanate isomer I, FITC, concentrations.
View Article and Find Full Text PDFIt is demonstrated that the kinetic plot representation of experimental plate height data can also account for practical constraints on the column length, the peak width, the viscous heating, and the mobile-phase velocity without needing any iterative solution routine. This implies that the best possible kinetic performance to be expected from a given tested support under any possible set of practical optimization constraints can always be found using a directly responding calculation spreadsheet template. To show how the resulting constrained kinetic plots can be used as a powerful design and selection tool, the method has been applied to a series of plate height measurements performed on a number of different commercial columns for the same component (butyl-parabene) and mobile-phase composition.
View Article and Find Full Text PDFThe present paper reports on the separation of a mixture of fluorescein isothiocyanate-labeled angiotensin I and II peptides in a shear-driven nanochannel with a C18-coating and using an eluent consisting of 5% acetonitrile in 0.02 M aqueous phosphate buffer at pH 6.5.
View Article and Find Full Text PDFThe present paper describes a method for measuring the molecular diffusion coefficient of fluorescent molecules in microfluidic systems. The proposed static shear-driven flow method allows one to perform diffusion measurements in a fast and accurate manner. The method also allows one to work in very thin (i.
View Article and Find Full Text PDFThe advantages of representing experimental plate height data as a plot of Kv/u0(2) or H2/Kv versus Kv/(Hu0) instead of as H versus u0 are discussed (Kv=column permeability). Multiplying the values on both axes by the ratio of a reference pressure drop and mobile-phase viscosity, the obtained plots directly yield the kinetic performance limits of the tested support structure, without any need for further numerical optimization. Directly showing the range of plate numbers or analysis times wherein the tested support geometry can yield faster separations or produce more plates than another support type, such kinetic plots are ideally suited to compare the performance of differently shaped or sized LC supports.
View Article and Find Full Text PDFWe report on a series of preliminary experiments investigating the applicability of a novel method for the size separation of nano- and microsized particles and cells. The working principle is based on the application of a shear-driven flow through stepwise tapered micro- or nanochannels. Size separations of mixtures of 0.
View Article and Find Full Text PDFWe explore the possibility of generating high-velocity flows of nanoparticles through flat-rectangular nanochannels, which are only 50% deeper than the diameter of the particles. Using the shear-driven flow principle, 200-nm particles can, for example, be transported through a 300-nm-deep channel at velocities up to 35 mm/s (upper limit of our current setup). Working under high-pH conditions, the velocity of the carboxylated nanoparticles still respects the small-molecule velocity law, despite the high degree of confinement to which the particles are subjected.
View Article and Find Full Text PDF