Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively.
View Article and Find Full Text PDFMicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia.
View Article and Find Full Text PDFPharmaceutics
May 2023
Agathisflavone, purified from (Tul.) has been shown to be neuroprotective in in vitro models of glutamate-induced excitotoxicity and inflammatory damage. However, the potential role of microglial regulation by agathisflavone in these neuroprotective effects is unclear.
View Article and Find Full Text PDFCauses of dopaminergic neuronal loss in Parkinson's disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration.
View Article and Find Full Text PDFStudies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation.
View Article and Find Full Text PDFMolecules
November 2021
Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, H and C NMR spectra.
View Article and Find Full Text PDFFlavonoids have been suggested to protect dopaminergic neurons in Parkinson's disease based on studies that used exogenous neurotoxins. In this study, we tested the protective ability of agathisflavone in SH-SY5Y cells exposed to the endogenous neurotoxin aminochrome. The ability of aminochrome to induce loss of lysosome acidity is an important mechanism of its neurotoxicity.
View Article and Find Full Text PDFBioorg Chem
May 2019
The new alkene lactone, (3E)-5,6-dihydro-5-(hydroxymethyl)-3-docdecylidenefuran-3(4H)-one (1), named majoranolide B, and three alkene lactones known as majorenolide (2), majoranolide (3) and majorynolide (4) were obtained from the aerial parts of Persea fulva (Lauraceae). The structures were elucidated in light of extensive spectroscopic analysis, including 1D, 2D NMR (H, C, H-H-COSY, HMBC and HSQC) and HR-ESI-MS. These compounds were screened for their in vitro antiproliferative activity in rat C6 glioma and astrocyte cells using MTT assay and in silico by molecular docking against targets that play a central role in controlling glioma cell cycle progression.
View Article and Find Full Text PDFRecent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1β production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats.
View Article and Find Full Text PDFNeurotoxicology
March 2018
Flavonoids are bioactive compounds that are known to be neuroprotective against glutamate-mediated excitotoxicity, one of the major causes of neurodegeneration. The mechanisms underlying these effects are unresolved, but recent evidence indicates flavonoids may modulate estrogen signaling, which can delay the onset and ameliorate the severity of neurodegenerative disorders. Furthermore, the roles played by glial cells in the neuroprotective effects of flavonoids are poorly understood.
View Article and Find Full Text PDFAminochrome has been suggested as a more physiological preclinical model capable of inducing five of the six mechanisms of Parkinson's Disease (PD). Until now, there is no evidence that aminochrome induces glial activation related to neuroinflammation, an important mechanism involved in the loss of dopaminergic neurons. In this study, the potential role of aminochrome on glial activation was studied in primary mesencephalic neuron-glia cultures and microglial primary culture from Wistar rats.
View Article and Find Full Text PDFNeurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance.
View Article and Find Full Text PDF