The cerebellum has been increasingly implicated in autism spectrum disorder (ASD) with many ASD-linked genes impacting both cerebellar function and development. However, the precise timing and critical periods of when abnormal cerebellar neurodevelopment contributes to ASD-relevant behaviors remains poorly understood. In this study, we identify a critical period for the development of ASD-relevant behaviors in a cerebellar male mouse model of tuberous sclerosis complex (TSC), by using the mechanistic target of rapamycin (mTOR) inhibitor, rapamycin, to pharmacologically inhibit dysregulated downstream signaling.
View Article and Find Full Text PDF