The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated reference genomes for five independently evolved parthenogenetic species in the stick insect genus and their closest sexual relatives. Using these references and population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity and often leads to genetically uniform populations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality.
View Article and Find Full Text PDFBioturbation activity of tubificid worms has been recognized as a key process influencing organic matter processing and nutrient cycling in benthic aquatic ecosystems. This activity is expected to modify benthic microbial communities by affecting the physical and chemical environment in sediments. Nevertheless, quantifications of bacterial community changes associated with bioturbation in freshwater ecosystems are still lacking.
View Article and Find Full Text PDFThanks to huge advances in sequencing technologies, genomic resources are increasingly being generated and shared by the scientific community. The quality of such public resources are therefore of critical importance. Errors due to contamination are particularly worrying; they are widespread, propagate across databases, and can compromise downstream analyses, especially the detection of horizontally-transferred sequences.
View Article and Find Full Text PDFA major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality.
View Article and Find Full Text PDFThe rate of molecular evolution varies widely among species. Life history traits (LHTs) have been proposed as a major driver of these variations. However, the relative contribution of each trait is poorly understood.
View Article and Find Full Text PDFThe field of stoichiogenomics aims at understanding the influence of nutrient limitations on the elemental composition of the genome, transcriptome, and proteome. The 20 amino acids and the 4 nt differ in the number of nutrients they contain, such as nitrogen (N). Thus, N limitation shall theoretically select for changes in the composition of proteins or RNAs through preferential use of N-poor amino acids or nucleotides, which will decrease the N-budget of an organism.
View Article and Find Full Text PDF