Publications by authors named "Clementine Hofmann"

The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food.

View Article and Find Full Text PDF

Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking.

View Article and Find Full Text PDF

Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive. NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1).

View Article and Find Full Text PDF

Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring.

View Article and Find Full Text PDF

Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring.

View Article and Find Full Text PDF

Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring.

View Article and Find Full Text PDF

The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known.

View Article and Find Full Text PDF

The annexin A5 gene (Anxa5) was recently found to be expressed in the developing and adult vascular system as well as the skeletal system. In this paper, the expression of an Anxa5-lacZ fusion gene was used to define the onset of expression in the vasculature and to characterize these Anxa5-lacZ-expressing vasculature-associated cells. After blastocyst implantation, Anxa5-lacZ-positive cells were first detected in extra-embryonic tissues and in angioblast progenitors forming the primary vascular plexus.

View Article and Find Full Text PDF

CREB-binding protein (CBP) is an important transcriptional cofactor for various intracellular signaling pathways, including Ca(2+)- and cAMP-mediated gene activation. The loss of one CBP allele causes the human Rubinstein-Taybi syndrome, which is characterized by mental retardation and other severe developmental defects. Deletion of both CBP alleles in the mouse leads to early embryonic lethality.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how ectopic bone forms in mice's muscles when treated with rhBMP2 and collagen type I.
  • Researchers used mRNA in situ hybridization to compare gene expressions between normal bone formation and BMP2-induced bone growth.
  • Findings indicated that key molecules regulating embryonic bone development are also present during ectopic bone formation, supporting the idea that both endochondral and intramembranous ossification occur simultaneously in this process.
View Article and Find Full Text PDF

Annexins are highly conserved proteins that are characterized by their ability to interact with phospholipids in a calcium-dependent manner. Although diverse functions have been ascribed to annexins based on in vitro analyses, their in vivo functions still remain unclear. The intensively studied annexin A5 has been identified by its effects on blood coagulation, and subsequently, its function as a calcium-specific ion channel was described.

View Article and Find Full Text PDF

Acquisition and storage of aversive memories is one of the basic principles of central nervous systems throughout the animal kingdom. In the absence of reinforcement, the resulting behavioural response will gradually diminish to be finally extinct. Despite the importance of extinction, its cellular mechanisms are largely unknown.

View Article and Find Full Text PDF