Publications by authors named "Clementina E A Cocuzza"

The effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles have been studied to design new potent antibacterials against Gram-positive multidrug-resistant pathogens. The adopted strategy involved a molecular modelling approach, the synthesis and biological evaluation of new designed compounds, enantiomers separation and absolute configuration assignment. Experimental determination of the antibacterial activity of the designed (S)-1-((3-(4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea and (S)-1-((3-(3-fluoro-4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea against multidrug resistant linezolid bacterial strains was higher than that of linezolid.

View Article and Find Full Text PDF

The synthesis and the in vitro antibacterial activity of novel linezolid-like oxadiazoles are reported. Replacement of the linezolid morpholine C-ring with 1,2,4-oxadiazole results in an antibacterial activity against Staphylococcus aureus both methicillin-susceptible and methicillin-resistant comparable or even superior to that of linezolid. While acetamidomethyl or thioacetoamidomethyl moieties in the C(5) side-chain are required, fluorination of the phenyl B ring exhibits a slight effect on an antibacterial activity but its presence seems to reduce the compounds cytotoxicity.

View Article and Find Full Text PDF

A series of N-methylthio-β-lactams with antibacterial activity were thoroughly evaluated as antioxidants. We found that only the presence of a polyphenolic moiety anchored to the β-lactam ring ensured an adequate antioxidant potency. New compounds, efficiently combining in one structure antioxidant and antibacterial activity, may provide a promising basis for the development of new leads useful in adverse clinical conditions such as in cystic fibrosis patients, in whom colonization by MRSA and epithelial damage by chronic pulmonary oxidative stress take place.

View Article and Find Full Text PDF

The increasing emergence of multidrug-resistant microorganisms is one of the greatest challenges in the clinical management of infectious disease. New antimicrobial agents are therefore urgently required, particularly in the treatment of chronic and recurrent infections often associated with antibiotic-resistant pathogens, as in the case of cystic fibrosis (CF) patients. This study reports the antibacterial activity of a series of monocyclic β-lactams with an alkylidenecarboxyl chain or electron-withdrawing groups such as 4-OAc, 4-SAc, and 4-SO(2)Ph at the C4 position of the ring.

View Article and Find Full Text PDF

The design, synthesis, and antibacterial activity of 4-alkyliden-azetidin-2-ones as new antimicrobial agents against multidrug-resistant pathogens is reported. 4-Alkyliden-azetidin-2-ones were easily obtained using an original protocol starting from 4-acetoxy-azetidinones and diazoesters. Parent compounds were further elaborated to obtain a small library of 4-alkylidene derivatives.

View Article and Find Full Text PDF