Unlabelled: The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far.
View Article and Find Full Text PDFMild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous.
View Article and Find Full Text PDFBacterial spores are a major challenge in industrial decontamination processes owing to their extreme resistance. High-pressure (HP) of 150 MPa at 37 °C can trigger the germination of spores, making them lose their extreme resistance. Once their resistance is lost, germinated spores can easily be inactivated by a mild decontamination step.
View Article and Find Full Text PDFAlthough heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth.
View Article and Find Full Text PDFGeobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment.
View Article and Find Full Text PDFGeobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G.
View Article and Find Full Text PDFFew antifungal protective cultures adapted to fermented dairy products are commercially available because of the numerous constraints linked to their market implementation. Consumer's demand for naturally preserved food products is growing and the utilization of lactic acid bacteria is a promising way to achieve this goal. In this study, using a 2(5-1) factorial fractional design, we first evaluated the effects of fermentation time, of initial sucrose concentration and of the initial contamination amount of a spoilage yeast, on antifungal activities of single and mixed cultures of Lactobacillus rhamnosus K.
View Article and Find Full Text PDF