Cell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases.
View Article and Find Full Text PDFThe objective of this study was to demonstrate that synchrotron K-edge subtraction tomography (SKES-CT) can simultaneously track therapeutic cells and their encapsulating carrier, in a rat model of focal brain injury using a dual-contrast agent approach. The second objective was to determine if SKES-CT could be used as a reference method for spectral photon counting tomography (SPCCT). Phantoms containing different concentrations of gold and iodine nanoparticles (AuNPS/INPs) were imaged with SKES-CT and SPCCT to assess their performances.
View Article and Find Full Text PDFThe activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT).
View Article and Find Full Text PDF