Publications by authors named "Clement Sorin"

Consumption of fresh-cut vegetables has rapidly increased over the past decades. Among salads, escarole is one of the most popular varieties. Specific packaging limits gas exchange and consequently water loss and bacterial respiration, increasing the shelf life of salads.

View Article and Find Full Text PDF

Background: Low field NMR has been used to investigate water status in various plant tissues. In plants grown in controlled conditions, the method was shown to be able to monitor leaf development as it could detect slight variations in senescence associated with structural modifications in leaf tissues. The aim of the present study was to demonstrate the potential of NMR to provide robust indicators of the leaf development stage in plants grown in the field, where leaves may develop less evenly due to environmental fluctuations.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examined how moderate nitrogen depletion affects leaf cell and tissue structure, which is important for nitrogen remobilization during senescence, leading to reduced seed yield.
  • * Two genotypes were compared for nitrogen depletion tolerance, with findings suggesting that monitoring leaf structure using NMR could help identify genotypes with better NUE.
View Article and Find Full Text PDF

Differential palisade and spongy parenchyma structural changes in oilseed rape leaf were demonstrated. These dismantling processes were linked to early senescence events and associated to remobilization processes. During leaf senescence, an ordered cell dismantling process allows efficient nutrient remobilization.

View Article and Find Full Text PDF

In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub-family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing 'half transporters' are semi-dominant and result in vascular patterning defects in cotyledons and the floral stem. Co-immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14).

View Article and Find Full Text PDF

Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants.

View Article and Find Full Text PDF