J R Soc Interface
November 2024
In this perspective article, we show that a morphospace, based on information-theoretic measures, can be a useful construct for comparing biological agents with artificial intelligence (AI) systems. The axes of this space label three kinds of complexity: (i) autonomic, (ii) computational and (iii) social complexity. On this space, we map biological agents such as bacteria, bees, C.
View Article and Find Full Text PDFIn cognitive science, Theory of Mind (ToM) is the mental faculty of assessing intentions and beliefs of others and requires, in part, to distinguish incoming sensorimotor (SM) signals and, accordingly, attribute these to either the self-model, the model of the other, or one pertaining to the external world, including inanimate objects. To gain an understanding of this mechanism, we perform a computational analysis of SM interactions in a dual-arm robotic setup. Our main contribution is that, under the common fate principle, a correlation analysis of the velocities of visual pivots is shown to be sufficient to characterize "the self" (including proximo-distal arm-joint dependencies) and to assess motor to sensory influences, and "the other" by computing clusters in the correlation dependency graph.
View Article and Find Full Text PDFThe use of artificial intelligence (AI) in a variety of research fields is speeding up multiple digital revolutions, from shifting paradigms in healthcare, precision medicine and wearable sensing, to public services and education offered to the masses around the world, to future cities made optimally efficient by autonomous driving. When a revolution happens, the consequences are not obvious straight away, and to date, there is no uniformly adapted framework to guide AI research to ensure a sustainable societal transition. To answer this need, here we analyze three key challenges to interdisciplinary AI research, and deliver three broad conclusions: 1) future development of AI should not only impact other scientific domains but should also take inspiration and benefit from other fields of science, 2) AI research must be accompanied by decision explainability, dataset bias transparency as well as development of evaluation methodologies and creation of regulatory agencies to ensure responsibility, and 3) AI education should receive more attention, efforts and innovation from the educational and scientific communities.
View Article and Find Full Text PDFWhat is the role of real-time control and learning in the formation of social conventions? To answer this question, we propose a computational model that matches human behavioral data in a social decision-making game that was analyzed both in discrete-time and continuous-time setups. Furthermore, unlike previous approaches, our model takes into account the role of sensorimotor control loops in embodied decision-making scenarios. For this purpose, we introduce the Control-based Reinforcement Learning (CRL) model.
View Article and Find Full Text PDFGenerating complex, human-like behavior in a humanoid robot like the iCub requires the integration of a wide range of open source components and a scalable cognitive architecture. Hence, we present the iCub-HRI library which provides convenience wrappers for components related to perception (object recognition, agent tracking, speech recognition, and touch detection), object manipulation (basic and complex motor actions), and social interaction (speech synthesis and joint attention) exposed as a C++ library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In addition to previously integrated components, the library allows for simple extension to new components and rapid prototyping by adapting to changes in interfaces between components.
View Article and Find Full Text PDFvocal development and intrinsic motivation. We propose and experimentally test the hypothesis that general mechanisms of intrinsically motivated spontaneous exploration, also called curiosity-driven learning, can self-organize developmental stages during early vocal learning. We introduce a computational model of intrinsically motivated vocal exploration, which allows the learner to autonomously structure its own vocal experiments, and thus its own learning schedule, through a drive to maximize competence progress.
View Article and Find Full Text PDFWe propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure their consequences.
View Article and Find Full Text PDFWe consider a computational model comparing the possible roles of "association" and "simulation" in phonetic decoding, demonstrating that these two routes can contain similar information in some "perfect" communication situations and highlighting situations where their decoding performance differs. We conclude that optimal decoding should involve some sort of fusion of association and simulation in the human brain.
View Article and Find Full Text PDFThe motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages.
View Article and Find Full Text PDF