The domain shift, or acquisition shift in medical imaging, is responsible for potentially harmful differences between development and deployment conditions of medical image analysis techniques. There is a growing need in the community for advanced methods that could mitigate this issue better than conventional approaches. In this paper, we consider configurations in which we can expose a learning-based pixel level adaptor to a large variability of unlabeled images during its training, i.
View Article and Find Full Text PDFPurpose: Stereotactic radiotherapy (SRT) has become widely accepted as a treatment of choice for patients with a small number of brain metastases that are of an acceptable size, allowing for better target dose conformity, resulting in high local control rates and better sparing of organs at risk. An MRI-only workflow could reduce the risk of misalignment between magnetic resonance imaging (MRI) brain studies and computed tomography (CT) scanning for SRT planning, while shortening delays in planning. Given the absence of a calibrated electronic density in MRI, we aimed to assess the equivalence of synthetic CTs generated by a generative adversarial network (GAN) for planning in the brain SRT setting.
View Article and Find Full Text PDF