Publications by authors named "Clemens Zeiser"

Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking.

View Article and Find Full Text PDF

Vibronic coupling has been proposed to play a decisive role in promoting ultrafast singlet fission (SF), the conversion of a singlet exciton into two triplet excitons. Its inherent complexity is challenging to explore, both from a theoretical and an experimental point of view, due to the variety of potentially relevant vibrational modes. Here, we report a study on blends of the prototypical SF chromophore pentacene in which we engineer the polarizability of the molecular environment to scan the energy of the excited singlet state (S) continuously over a narrow energy range, covering vibrational sublevels of the triplet-pair state ((TT)).

View Article and Find Full Text PDF

The fission of singlet excitons into triplet pairs in organic materials holds great technological promise, but the rational application of this phenomenon is hampered by a lack of understanding of its complex photophysics. Here, we use the controlled introduction of vacancies by means of spacer molecules in tetracene and pentacene thin films as a tuning parameter complementing experimental observables to identify the operating principles of different singlet fission pathways. Time-resolved spectroscopic measurements in combination with microscopic modelling enables us to demonstrate distinct scenarios, resulting from different singlet-to-triplet pair energy alignments.

View Article and Find Full Text PDF

Singlet fission (SF), the photophysical process in which one singlet exciton is transformed into two triplets, depends on the coupling of electronic states. Here, we use fluorination and the resulting changes in partial charge distribution across the chromophore backbone as a particularly powerful tool to control this parameter in pentacene. We find that the introduction of a permanent dipole moment leads to an enhanced coupling of Frenkel exciton and charge transfer states and to an increased SF rate which we probed using ultrafast transient absorption spectroscopy.

View Article and Find Full Text PDF

Many polymorphic crystal structures of copper phthalocyanine (CuPc) have been reported over the past few decades, but despite its manifold applicability, the structure of the frequently mentioned α polymorph remained unclear. The base-centered unit cell (space group 2/) suggested in 1966 was ruled out in 2003 and was replaced by a primitive triclinic unit cell (space group 1). This study proves unequivocally that both α structures coexist in vacuum-deposited CuPc thin films on native silicon oxide by reciprocal space mapping using synchrotron radiation in grazing incidence.

View Article and Find Full Text PDF

Archetypal donor-acceptor (D-A) interfaces composed of perfluoropentacene (PFP) and pentacene (PEN) are examined for charge transfer (CT) state formation and energetics as a function of their respective molecular configuration. To exclude morphological interference, our structural as well as highly sensitive differential reflectance spectroscopy studies were carried out on PFP thin films epitaxially grown on PEN(001) single-crystal facets. Whereas the experimental data supported by complementary theoretical calculations confirm the formation of a strong CT state in the case of a cofacial PFP-PEN stacking, CT formation is energetically less favorable and thus absent for the corresponding head-to-tail configuration as disclosed for the first time.

View Article and Find Full Text PDF

Heterofission is a photophysical process of fundamental and applied interest whereby an excited singlet state is converted into two triplets on chemically distinct chromophores. The potential of this process lies in the tuning of both the optical band gap and the splitting between singlet and triplet energies. Herein, we report the time-domain observation of heterofission in mixed thin films of the prototypical singlet fission chromophores pentacene and tetracene using excitation wavelengths above and below the tetracene band gap.

View Article and Find Full Text PDF

The properties as well as solid-state structures, singlet fission, and organic field-effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13-etheno-bridged precursors by reaction with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhl0nnm7oeqqhtiomu7bgjqv7kujjqogd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once