Publications by authors named "Clemens Schmid"

Article Synopsis
  • GbPC-CT is gaining popularity for its ability to enhance soft-tissue contrast in imaging, but it struggles with resolution issues, especially at low doses commonly used in clinical settings.
  • The study introduces a self-supervised deep learning model called Noise2Inverse, which helps enhance image quality while reducing the required radiation dose.
  • The results show that Noise2Inverse outperforms traditional denoising methods, indicating that deep learning can improve the resolution of gbPC-CT images, making it a more viable option for medical applications.
View Article and Find Full Text PDF

Background: Computed tomography (CT) relies on the attenuation of x-rays, and is, hence, of limited use for weakly attenuating organs of the body, such as the lung. X-ray dark-field (DF) imaging is a recently developed technology that utilizes x-ray optical gratings to enable small-angle scattering as an alternative contrast mechanism. The DF signal provides structural information about the micromorphology of an object, complementary to the conventional attenuation signal.

View Article and Find Full Text PDF

X-ray computed tomography (CT) is a crucial tool for non-invasive medical diagnosis that uses differences in materials' attenuation coefficients to generate contrast and provide 3D information. Grating-based dark-field-contrast X-ray imaging is an innovative technique that utilizes small-angle scattering to generate additional co-registered images with additional microstructural information. While it is already possible to perform human chest dark-field radiography, it is assumed that its diagnostic value increases when performed in a tomographic setup.

View Article and Find Full Text PDF

Objective: Fat deposition is modulated by environmental factors and genetic predisposition. Genome-wide association studies identified p.I148M (rs738409) as a common variant that increases risk of developing liver steatosis.

View Article and Find Full Text PDF

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. ) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. ).

View Article and Find Full Text PDF

Grating-based phase- and dark-field-contrast X-ray imaging is a novel technology that aims to extend conventional attenuation-based X-ray imaging by unlocking two additional contrast modalities. The so called phase-contrast and dark-field channels provide enhanced soft tissue contrast and additional microstructural information. Accessing this additional information comes at the expense of a more intricate measurement setup and necessitates sophisticated data processing.

View Article and Find Full Text PDF

The recent increase in openly available ancient human DNA samples allows for large-scale meta-analysis applications. Trans-generational past human mobility is one of the key aspects that ancient genomics can contribute to since changes in genetic ancestry-unlike cultural changes seen in the archaeological record-necessarily reflect movements of people. Here, we present an algorithm for spatiotemporal mapping of genetic profiles, which allow for direct estimates of past human mobility from large ancient genomic datasets.

View Article and Find Full Text PDF

X-ray computed tomography (CT) is an important non-destructive imaging technique, particularly in clinical diagnostics. Even with the latest innovations like dual-energy and photon-counting CT, the image contrast is solely generated from attenuation in the tissue. An extension - fully compatible with these novelties - is dark-field CT, which retrieves an additional, so-called dark-field contrast.

View Article and Find Full Text PDF

X-ray computed tomography (CT) is an invaluable imaging technique for non-invasive medical diagnosis. However, for soft tissue in the human body the difference in attenuation is inherently small. Grating-based X-ray phase-contrast is a relatively novel imaging method which detects additional interaction mechanisms between photons and matter, namely refraction and small-angle scattering, to generate additional images with different contrast.

View Article and Find Full Text PDF

Computed tomography (CT) as an important clinical diagnostics method can profit from extension with dark-field imaging, as it is currently restricted to X-rays' attenuation contrast only. Dark-field imaging allows access to more tissue properties, such as micro-structural texture or porosity. The up-scaling process to clinical scale is complex because several design constraints must be considered.

View Article and Find Full Text PDF

X-ray computed tomography (CT) is one of the most commonly used three-dimensional medical imaging modalities today. It has been refined over several decades, with the most recent innovations including dual-energy and spectral photon-counting technologies. Nevertheless, it has been discovered that wave-optical contrast mechanisms-beyond the presently used X-ray attenuation-offer the potential of complementary information, particularly on otherwise unresolved tissue microstructure.

View Article and Find Full Text PDF