With a half-life of 10.7 years, the noble gas radioisotope Kr is perfectly suited as a tracer to date ice and water that formed during the past half century. Furthermore, due to its inhomogeneous input into the atmosphere, it is a useful tool to investigate atmospheric circulation and back-trajectory analysis.
View Article and Find Full Text PDFFor almost half a century weekly samples for the measurement of krypton-85 (Kr) activity concentrations in surface air have been collected by the Bundesamt für Strahlenschutz (BfS), Germany. Sampling started at Freiburg (230m asl) in 1973, Mt Schauinsland (1205m asl) in 1976 and Mt Jungfraujoch in Switzerland (3454 asl) in 1990. Distinct maxima in the time series of atmospheric Kr activity concentration are caused by emissions from nuclear reprocessing plants in Europe, mainly the La Hague, France, and Sellafield, UK, reprocessing plants.
View Article and Find Full Text PDFDue to its half-life, chemical inertness and low solubility in water, radioactive Kr is a valuable tracer for testing the performance of atmospheric dispersion models in simulating long-range transport of pollutants. This paper evaluates the capability of simulating the dispersion of radiokrypton emitted by a nuclear fuel reprocessing plant in north-west France. Three time periods during which elevated activity concentrations of Kr in ground level air were detected in south-west Germany are chosen.
View Article and Find Full Text PDFThe International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime.
View Article and Find Full Text PDFAfter the accident in the Japanese Fukushima Dai-ichi nuclear power plant in March 2011 large amounts of radioactivity were released and distributed in the atmosphere. Among them were also radioactive noble gas isotopes which can be used as tracers to test global atmospheric circulation models. This work presents unique measurements of the radionuclide (133)Xe from Fukushima in the upper troposphere above Germany.
View Article and Find Full Text PDFMedical isotope production facilities (MIPF) have recently been identified to emit the major part of the environmental radioxenon measured at many globally distributed monitoring sites deployed to strengthen the radionuclide component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification regime. Efforts to raise a global radioxenon emission inventory revealed that the yearly global total emission from MIPF's is around 15 times higher than the total radioxenon emission from nuclear power plants (NPP's). Given that situation, from mid 2008 until early 2009 two out of the ordinary hemisphere-specific events occured: 1) In the Northern hemisphere, a joint temporary suspension of operations of the three largest MIPF's made it possible to quantify the effects of the emissions related to NPP's.
View Article and Find Full Text PDFAtmospheric 85Kr concentrations have been continuously monitored since 1995 at the Meteorological Research Institute (MRI) in Tsukuba, Japan. They have also been observed once a year at several stations over the Japanese islands since 1995. The annual growth rate of the background atmospheric 85Kr concentrations in Tsukuba was 0.
View Article and Find Full Text PDF