Publications by authors named "Clemens Roider"

Dynamic phase-only beam shaping with a liquid crystal spatial light modulator is a powerful technique for tailoring the intensity profile or wave front of a beam. While shaping and controlling the light field is a highly researched topic, dynamic nonlinear beam shaping has hardly been explored so far. One potential reason is that generating the second harmonic is a degenerate process as it mixes two fields at the same frequency.

View Article and Find Full Text PDF

Phase-only beam shaping with liquid crystal on silicon spatial light modulators (SLM) allows modulating the wavefront dynamically and generating arbitrary intensity patterns with high efficiency. Since this method cannot take control of all degrees of freedom, a speckle pattern appears and drastically impairs the outcome. There are several methods to overcome this issue including algorithms which directly control phase and amplitude, but they suffer from low efficiency.

View Article and Find Full Text PDF

Due to significant advantages, the trend in the field of medical technology is moving towards minimally or even non-invasive examination methods. In this respect, optical methods offer inherent benefits, as does diffuse reflectance imaging (DRI). The present study attempts to prove the suitability of DRI-when implemented alongside a suitable setup and data evaluation algorithm-to derive information from anatomically correctly scaled human capillaries (diameter: [Formula: see text], length: [Formula: see text]) by conducting extensive Monte-Carlo simulations and by verifying the findings through laboratory experiments.

View Article and Find Full Text PDF

Remote focusing means to translate the focus position of an imaging system along the optical axis without moving the objective lens. The concept gains increasing importance as it allows for quick 3D focus steering in scanning microscopes, leaves the sample region unperturbed and is compatible with conjugated adaptive optics. Here we present a novel remote focusing approach that can be used in conjunction with high numerical aperture optics.

View Article and Find Full Text PDF

The spectral dispersion of ultrashort pulses allows the simultaneous focusing of light in both space and time, which creates so-called spatiotemporal foci. Such space-time coupling may be combined with the existing holographic techniques to give a further dimension of control when generating focal light fields. In the present study, it is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three-dimensional arrays of spatio-temporally focused spots.

View Article and Find Full Text PDF

Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested.

View Article and Find Full Text PDF

We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber.

View Article and Find Full Text PDF

RESCH (refocusing after scanning using helical phase engineering) microscopy is a scanning technique using engineered point spread functions which provides volumetric information. We present a strategy for processing the collected raw data with a multi-view maximum likelihood deconvolution algorithm, which inherently comprises the resolution gain of pixel-reassignment microscopy. The method, which we term MD-RESCH (for multi-view deconvolved RESCH), achieves in our current implementation a 20% resolution advantage along all three axes compared to RESCH and confocal microscopy.

View Article and Find Full Text PDF

We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles.

View Article and Find Full Text PDF

Objects imaged through thin scattering media can be reconstructed with the knowledge of the complex transmission function of the diffuser. We demonstrate image reconstruction of static and dynamic objects with numerical phase conjugation in a lensless setup. Data is acquired by single shot intensity capture of an object coherently illuminated and obscured by an inhomogeneous medium, i.

View Article and Find Full Text PDF

We present a hybrid diffractive-refractive optical lens doublet consisting of a varifocal Moiré Fresnel lens and a polymer lens of tunable refractive power. The wide range of focal tunability of each lens and the opposite dispersive characteristics of the diffractive and the refractive element are exploited to obtain an optical system where both the Abbe number and the refractive power can be changed separately. We investigate the performance of the proposed hybrid lens at zero overall refractive power by tuning the Abbe number of a complementary standard lens while maintaining a constant overall focal length for the central wavelength.

View Article and Find Full Text PDF

We present an approach for point spread function (PSF) engineering that allows one to shape the optical wavefront independently in both polarisation directions, with two adjacent phase masks displayed on a single liquid-crystal spatial light modulator (LC-SLM). The set-up employs a polarising beam splitter and a geometric image rotator to rectify and process both polarisation directions detected by the camera. We shape a single-lobe ("corkscrew") PSF that rotates upon defocus for each polarisation channel and combine the two polarisation channels with a relative 180° phase-shift on the computer, merging them into a single PSF that exhibits two lobes whose orientation contains information about the axial position.

View Article and Find Full Text PDF

Numerous studies on nanocarriers use fluorescent dye labeling to investigate their biodistribution or cellular trafficking. However, when the fluorescence dye is not grafted to the nanocarrier, the question of the stability of the labeling arises. How can it be validated that the fluorescence observed during an experiment corresponds to the nanocarriers, and not to the free dye released from the nanocarriers? Studying the integrity of the labeling is challenging.

View Article and Find Full Text PDF

We present a method to increase the number of simultaneously imaged focal planes in diffractive multi-plane imaging. We exploit the chromatic properties of diffraction by using multicolor LED illumination and demonstrate time-synchronous imaging of up to 21 focal planes.We discuss the possibilities and limits given by the use of a liquid crystal spatial light modulator to display the diffractive patterns.

View Article and Find Full Text PDF

We present a method that allows one to measure the real and imaginary parts of the third-order susceptibility in a wide-field coherent anti-Stokes Raman scattering setup using a quadriwave lateral shearing interferometer. This permits the retrieval of the undistorted Raman spectrum and the removal of a nonresonant signal from the surrounding solvent, which otherwise may overwhelm weak resonances.

View Article and Find Full Text PDF

We introduce a widefield CARS microscope implementation that uses a spatial light modulator to obtain extremely precise control over the pump/probe-beam incidence geometry, which provides the possibility to enhance the image contrast at specific target resonances by fine-tuning the incidence angles. We show how this technique can be used to optimize the image contrast between objects of different size and to practically eliminate the undesired signal from the solvent that embeds small target specimens. Changing the numerical aperture of the illumination from 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoh172e6gnekcaujkj10boep9lg91jdq0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once