Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO), we here demonstrate simultaneous three-color imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy.
View Article and Find Full Text PDFFailure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity.
View Article and Find Full Text PDFAltered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging.
View Article and Find Full Text PDFTissue injury and infection trigger innate immune responses. However, dysregulation may result in chronic inflammation and is commonly treated with corticosteroids and non-steroidal anti-inflammatory drugs. Unfortunately, long-term administration of both therapeutic classes can cause unwanted side effects.
View Article and Find Full Text PDFRedox signals have emerged as important regulators of cellular physiology and pathology. The advent of redox imaging in vertebrate systems now provides the opportunity to dynamically visualize redox signaling during development and disease. In this review, we summarize recent advances in the generation of genetically encoded redox indicators (GERIs), introduce new redox imaging strategies, and highlight key publications in the field of vertebrate redox imaging.
View Article and Find Full Text PDFFor 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2014
Neutrophils are the most abundant polymorphonuclear leukocytes, presenting the first line of defence against infection or tissue damage. To characterize the molecular changes on the protein level in neutrophils during sterile inflammation we established the chemically-induced inflammation (ChIn) assay in adult zebrafish and investigated the proteome dynamics within neutrophils of adult zebrafish upon inflammation. Through label-free proteomics we identified 48 proteins that were differentially regulated during inflammation.
View Article and Find Full Text PDFNeutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments.
View Article and Find Full Text PDFThe second European Zebrafish Principal Investigator (PI) Meeting was held in March, 2012, in Karlsruhe, Germany. It brought together PIs from all over Europe who work with fish models such as zebrafish and medaka to discuss their latest results, as well as to resolve strategic issues faced by this research community. Scientific discussion ranged from the development of new technologies for working with fish models to progress in various fields of research such as injury and repair, disease models, and cell polarity and dynamics.
View Article and Find Full Text PDFHigh-performance sensors for reactive oxygen species are instrumental to monitor dynamic events in cells and organisms. Here, we present HyPer-3, a genetically encoded fluorescent indicator for intracellular H2O2 exhibiting improved performance with respect to response time and speed. HyPer-3 has an expanded dynamic range compared to HyPer and significantly faster oxidation/reduction dynamics compared to HyPer-2.
View Article and Find Full Text PDFPrompt neutrophil arrival is critical for host defense immediately after injury [1-3]. Following wounding, a hydrogen peroxide (H(2)O(2)) burst generated in injured tissues is the earliest known leukocyte chemoattractant [4]. Generating this tissue-scale H(2)O(2) gradient uses dual oxidase [4] and neutrophils sense H(2)O(2) by a mechanism involving the LYN Src-family kinase [5], but the molecular mechanisms responsible for H(2)O(2) clearance are unknown [6].
View Article and Find Full Text PDFZebrafish larvae are particularly amenable to whole animal small molecule screens due to their small size and relative ease of manipulation and observation, as well as the fact that compounds can simply be added to the bathing water and are readily absorbed when administered in a <1% DMSO solution. Due to the optical clarity of zebrafish larvae and the availability of transgenic lines expressing fluorescent proteins in leukocytes, zebrafish offer the unique advantage of monitoring an acute inflammatory response in vivo. Consequently, utilizing the zebrafish for high-content small molecule screens aiming at the identification of immune-modulatory compounds with high throughput has been proposed, suggesting inflammation induction scenarios e.
View Article and Find Full Text PDFCell penetrating peptoids (CPPos) are potent mimics of the corresponding cell penetrating peptides (CPPs). The synthesis of diverse oligomeric libraries that display a variety of backbone scaffolds and side-chain appendages are a very promising source of novel CPPos, which can be used to either target different cellular organelles or even different tissues and organs. In this study we established the submonomer-based solid phase synthesis of a "proof of principle" peptoid library in IRORI MiniKans to expand the amount for phenotypic high throughput screens of CPPos.
View Article and Find Full Text PDFNUP98-HOXA9 [t(7;11) (p15;p15)] is associated with inferior prognosis in de novo and treatment-related acute myeloid leukaemia (AML) and contributes to blast crisis in chronic myeloid leukaemia (CML). We have engineered an inducible transgenic zebrafish harbouring human NUP98-HOXA9 under the zebrafish spi1(pu.1) promoter.
View Article and Find Full Text PDFBackground: Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds.
View Article and Find Full Text PDFAlthough first used experimentally for the genetic analysis of vertebrate development and neurobiology, the zebrafish has been adapted as a model for many human diseases. In recent years, the zebrafish embryo has increasingly attracted the attention of chemists and pharmacologists for its utility in identifying chemicals with pharmacological activity in a whole-animal context. Its experimental virtues make it an ideal system with which to identify new bioactive molecules, and to assess their toxicity and teratogenicity at medium-to-high throughput.
View Article and Find Full Text PDFMutations in the human nucleophosmin (NPM1) gene are the most frequent genetic alteration in adult acute myeloid leukemias (AMLs) and result in aberrant cytoplasmic translocation of this nucleolar phosphoprotein (NPMc+). However, underlying mechanisms leading to leukemogenesis remain unknown. To address this issue, we took advantage of the zebrafish model organism, which expresses 2 genes orthologous to human NPM1, referred to as npm1a and npm1b.
View Article and Find Full Text PDFBone marrow angiogenesis is associated with multiple myeloma (MM) progression. Here, we report high constitutive hypoxia-inducible factor-1alpha (Hif-1alpha) expression in MM cells, which is associated with oncogenic c-Myc. A drug screen for anti-MM agents that decrease Hif-1alpha and c-Myc levels identified a variety of compounds, including bortezomib, lenalidomide, enzastaurin, and adaphostin.
View Article and Find Full Text PDFBarrier structures (for example, epithelia around tissues and plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometres within minutes of wounding.
View Article and Find Full Text PDFFrom among a plethora of various gene delivery methods, the researcher must choose the right one according to availability for a given species and the precise application the transgenic animal is intended for. Here we review the progress in meganuclease and Sleeping Beauty transposon mediated transgenesis over recent years with a focus on medaka and zebrafish. We present a side-by-side comparison of these two approaches based on their biologic properties and provide interesting perspectives for future experiments and applications, which are different for the two techniques because of their distinct modes of action.
View Article and Find Full Text PDFTransgenesis is an important tool for assessing gene function. In zebrafish, transgenesis has suffered from three problems: the labor of building complex expression constructs using conventional subcloning; low transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent germline incorporation; and difficulty in identifying germline integrations unless using a fluorescent marker transgene. The Tol2kit system uses site-specific recombination-based cloning (multisite Gateway technology) to allow quick, modular assembly of [promoter]-[coding sequence]-[3' tag] constructs in a Tol2 transposon backbone.
View Article and Find Full Text PDFMacrophages detecting and migrating toward sites of injury and infection represent one of the first steps in an immune response. Here we directly image macrophage birth and migration in vivo in transgenic medaka fish. Macrophages are born as frequently dividing, immotile cells with spherical morphology that differentiate into flat, highly motile cells.
View Article and Find Full Text PDFThe chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.
View Article and Find Full Text PDF