Publications by authors named "Clemens C M van de Wiel"

Plant breeding aims to develop improved crop varieties. Many crops have a polyploid and often highly heterozygous genome, which may make breeding of polyploid crops a real challenge. The efficiency of traditional breeding based on crossing and selection has been improved by using marker-assisted selection (MAS), and MAS is also being applied in polyploid crops, which helps e.

View Article and Find Full Text PDF

During the 20th century, the economic position of oats (Avena sativa L.) decreased strongly in favour of higher yielding crops including winter wheat and maize. Presently, oat represents only ~1.

View Article and Find Full Text PDF

There is currently limited knowledge on the role of hormones in plants responses to combinations of abiotic and pathogen stress factors. This study focused on the response of tomato near-isogenic lines (NILs) that carry the , and loci, conferring resistance to tomato powdery mildew (PM) caused by , to combined PM and salt stress. These NILs were crossed with the (ABA-deficient), (JA-deficient), and (ET overproducer) tomato mutants to investigate possible roles of hormone signaling in response to combined stresses.

View Article and Find Full Text PDF

Various new plant breeding techniques (NPBT) have a similar aim, namely to produce improved crop varieties that are difficult to obtain through traditional breeding methods. Here, we review the opportunities for products created using NPBTs. We categorize products of these NPBTs into three product classes with a different degree of genetic modification.

View Article and Find Full Text PDF

The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance.

View Article and Find Full Text PDF

Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids.

View Article and Find Full Text PDF

Many crops contain domestication genes that are generally considered to lower fitness of crop-wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness.

View Article and Find Full Text PDF

With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency.

View Article and Find Full Text PDF

Interspecific gene flow can lead to the formation of hybrid populations that have a competitive advantage over the parental populations, even for hybrids from a cross between crops and wild relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as one of the mechanisms behind this expansion.

View Article and Find Full Text PDF

Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it.

View Article and Find Full Text PDF

Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species.

View Article and Find Full Text PDF