Publications by authors named "Clemence Virely"

Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, β-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although β-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs.

View Article and Find Full Text PDF

Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases.

View Article and Find Full Text PDF

A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML.

View Article and Find Full Text PDF

To design rational therapies for JAK2-driven hematological malignancies, we functionally dissected the key survival pathways downstream of hyperactive JAK2. In tumors driven by mutant JAK2, Stat1, Stat3, Stat5, and the Pi3k and Mek/Erk pathways were constitutively active, and gene expression profiling of TEL-JAK2 T-ALL cells revealed the upregulation of prosurvival Bcl-2 family genes. Combining the Bcl-2/Bcl-xL inhibitor ABT-737 with JAK2 inhibitors mediated prolonged disease regressions and cures in mice bearing primary human and mouse JAK2 mutant tumors.

View Article and Find Full Text PDF

Background: Programmed cell death has been traditionally related with caspase activation. However, it is now accepted that caspase-independent forms of programmed cell death also regulate cell death. In chronic lymphocytic leukemia, CD47 ligation induces one of these alternative forms of cell death: type III programmed cell death.

View Article and Find Full Text PDF

Ligation of CD47 triggers caspase-independent programmed cell death (PCD) in normal and leukemic cells. Here, we characterize the morphological and biochemical features of this type of death and show that it displays the hallmarks of type III PCD. A molecular and biochemical approach has led us to identify a key mediator of this type of death, dynamin-related protein 1 (Drp1).

View Article and Find Full Text PDF