Publications by authors named "Clemence Rigaux"

Recruitment for pediatric trials in Type II Diabetes Mellitus (T2DM) is very challenging, necessitating the exploration of new approaches for reducing the sample sizes of pediatric trials. This work aimed at assessing if a longitudinal Non-Linear-Mixed-Effect (NLME) analysis of T2DM trial could be more powerful and thus require fewer patients than two standard statistical analyses commonly used as primary or sensitivity efficacy analysis: Last-Observation-Carried-Forward (LOCF) followed by (co)variance (AN(C)OVA) analysis at the evaluation time-point, and Mixed-effects Model Repeated Measures (MMRM) analysis. Standard T2DM efficacy studies were simulated, with glycated hemoglobin (HbA1c) as the main endpoint, 24 weeks' study duration, 2 arms, assuming a placebo and a treatment effect, exploring three different scenarios for the evolution of HbA1c, and accounting for a dropout phenomenon.

View Article and Find Full Text PDF

This article describes how a frequentist model averaging approach can be used for concentration-QT analyses in the context of thorough QTc studies. Based on simulations, we have concluded that starting from three candidate model families (linear, exponential, and Emax) the model averaging approach leads to treatment effect estimates that are quite robust with respect to the control of the type I error in nearly all simulated scenarios; in particular, with the model averaging approach, the type I error appears less sensitive to model misspecification than the widely used linear model. We noticed also few differences in terms of performance between the model averaging approach and the more classical model selection approach, but we believe that, despite both can be recommended in practice, the model averaging approach can be more appealing because of some deficiencies of model selection approach pointed out in the literature.

View Article and Find Full Text PDF

Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G.

View Article and Find Full Text PDF

Predicting microbial survival requires reference parameters for each micro-organism of concern. When data are abundant and publicly available, a meta-analysis is a useful approach for assessment of these parameters, which can be performed with hierarchical Bayesian modeling. Geobacillus stearothermophilus is a major agent of microbial spoilage of canned foods and is therefore a persistent problem in the food industry.

View Article and Find Full Text PDF

The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts' knowledge about the microbial dynamics of a given food-borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high-dimensional second-order QMRA model.

View Article and Find Full Text PDF