Massively Parallel Sequencing (MPS) applied to forensic genetics allows the simultaneous analysis of hundreds of genetic markers and the access to full amplicon sequences which help to increase available allele diversity. Meanwhile, sequence variation within the repeat regions represents the majority of the allele diversity, flanking regions adjacent to the repeat core provide an additional degree of variation. The forensic genetics community needs access to population data, from relevant parts of the world that contain this new sequence diversity in order to perform statistical calculations.
View Article and Find Full Text PDFMassively parallel sequencing (MPS) applications in forensic science highlight the advantages of this technique compared to capillary electrophoresis (CE). The multiplexing of a wide range of genetic markers and access to the full amplicon sequence, allowing the detection of isoalleles, make it a very promising tool which could be applied to the most challenging casework DNA samples. However, the complexity of the manual library preparation protocol, potential DNA contamination and sample tracking issues are the main reasons why forensic scientists still hesitate to implement MPS analytical workflows in their laboratory.
View Article and Find Full Text PDFObjectives: This work focuses on the populations of South Siberia during the Eneolithic and Bronze Age and specifically on the contribution of uniparental lineage and phenotypical data to the question of the genetic affinities and discontinuities between western and eastern populations.
Materials And Methods: We performed molecular analyses on the remains of 28 ancient humans (10 Afanasievo (3600-2500 BC) and 18 Okunevo (2500-1800 BC) individuals). For each sample, two uniparentally inherited systems (mitochondrial DNA and Y-chromosome DNA) were studied, in order to trace back maternal and paternal lineages.
For fifteen years, part of the work of our research team has been focused on the study of parental links between individuals living hundreds or thousands of years ago, whose remains have been found in single graves or large funerary complexes. These studies have been undertaken using methods developed by forensic genetics to identify individuals, mainly based on the genotyping of autosomal STR (Short Tandem Repeats). Issues arose from this work, namely the limits of studying small numbers of subjects, originating from groups of finite sizes where kinships cannot be inferred a priori and for which reference allelic frequencies do not exist.
View Article and Find Full Text PDFThis study is part of an ongoing project aiming at determining the ethnogenesis of an eastern Siberian ethnic group, the Yakuts, on the basis of archaeological excavations carried out over a period of 10 years in three regions of Yakutia: Central Yakutia, the Vilyuy River basin and the Verkhoyansk area. In this study, genetic analyses were carried out on skeletal remains from 130 individuals of unknown ancestry dated mainly from the fifteenth to the nineteenth century AD. Kinship studies were conducted using sets of commercially available autosomal and Y-chromosomal short tandem repeats (STRs) along with hypervariable region I sequences of the mitochondrial DNA.
View Article and Find Full Text PDFThe Altai Mountains have been a long-term boundary zone between the Eurasian Steppe populations and South and East Asian populations. To disentangle some of the historical population movements in this area, 14 ancient human specimens excavated in the westernmost part of the Mongolian Altai were studied. Thirteen of them were dated from the Middle to the End of the Bronze Age and one of them to the Eneolithic period.
View Article and Find Full Text PDFThe IrisPlex system is a DNA-based test system for the prediction of human eye colour from biological samples and consists of a single forensically validated multiplex genotyping assay together with a statistical prediction model that is based on genotypes and phenotypes from thousands of individuals. IrisPlex predicts blue and brown human eye colour with, on average, >94% precision accuracy using six of the currently most eye colour informative single nucleotide polymorphisms (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2 (MATP) rs16891982, TYR rs1393350, and IRF4 rs12203592) according to a previous study, while the accuracy in predicting non-blue and non-brown eye colours is considerably lower. In an effort to vigorously assess the IrisPlex system at the international level, testing was performed by 21 laboratories in the context of a collaborative exercise divided into three tasks and organised by the European DNA Profiling (EDNAP) Group of the International Society of Forensic Genetics (ISFG).
View Article and Find Full Text PDFImportant developments in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique have generated new perspectives regarding SNP genotyping, which are particularly promising for ancient population-based studies. The main aim of the present study was to investigate the application of a MALDI-TOF MS-based SNP genotyping technique, called iPLEX(®) Gold, to analyze Amerindian ancient DNA samples. The first objective was to test the sensitivity of the method, which is recommended for DNA quantities between 10 and 5 ng, for ancient biological samples containing DNA molecules that were degraded and present in minute quantities.
View Article and Find Full Text PDF