The standard above-water protocol for measurement of water reflectance uses a measurement of wind speed to estimate the air-water interface reflectance factor and, thus, remove reflected skylight from upwelling radiance. This aerodynamic wind speed measurement may be a poor proxy for the local wave slope distribution in cases such as fetch-limited coastal and inland waters and/or where there are spatial or temporal differences between the wind speed measurement and the location of reflectance measurements. Here, an improved method is proposed, with a focus on sensors mounted on autonomous pan-tilt units and deployed on fixed platforms, replacing the aerodynamic wind speed measurement by optical measurements of angular variation of upwelling radiance.
View Article and Find Full Text PDFWater pixel extraction and correction of the atmospheric signal represent prerequisite steps prior to applying algorithms dedicated to the assessment of water quality of natural surface water bodies. The recent multiplication of medium spatial resolution sensors (10-60 m) provides the required constellation to monitoring bio-optical and biogeochemical parameters of surface waters at the relevant spatial-temporal scales. Here we present a new approach to identify water pixels and to extract the atmospheric contribution to the top of atmosphere signal measured by the NAOMI sensor on board the first Vietnamese satellite, VNREDSat-1.
View Article and Find Full Text PDF