Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation.
View Article and Find Full Text PDFFundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks.
View Article and Find Full Text PDFHomologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells.
View Article and Find Full Text PDFMost human somatic cells express insufficient levels of telomerase, which can result in telomere shortening and eventually senescence, both of which are hallmarks of ageing. Homology-directed repair (HDR) is important for maintaining proper telomere function in yeast and mammals. In Saccharomyces cerevisiae, Rad52 is required for almost all HDR mechanisms, and telomerase-null cells senesce faster in the absence of Rad52.
View Article and Find Full Text PDFIn cells lacking telomerase, telomeres shorten progressively during each cell division due to incomplete end-replication. When the telomeres become very short, cells enter a state that blocks cell division, termed senescence. A subset of these cells can overcome senescence and maintain their telomeres using telomerase-independent mechanisms.
View Article and Find Full Text PDFThe ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death.
View Article and Find Full Text PDFBacillus subtilis sporulation depends on the forespore membrane protein SpoIIQ, which interacts with the mother cell protein SpoIIIAH at the septum to localize other sporulation proteins. It has remained unclear how SpoIIQ localizes. We demonstrate that localization of SpoIIQ is achieved by two pathways: SpoIIIAH and the SpoIID, SpoIIM, SpoIIP engulfment proteins.
View Article and Find Full Text PDFInsulin-degrading enzyme (IDE) is an atypical zinc-metallopeptidase that degrades insulin and the amyloid ß-protein and is strongly implicated in the pathogenesis of diabetes and Alzheimer's disease. We recently developed the first effective inhibitors of IDE, peptide hydroxamates that, while highly potent and selective, are relatively large (MW > 740) and difficult to synthesize. We present here a facile synthetic route that yields enantiomerically pure derivatives comparable in potency to the parent compounds.
View Article and Find Full Text PDF