Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the photosynthetic reaction centers under high-light conditions. The photoactive orange carotenoid protein (OCP) is essential in this mechanism as a light sensor and energy quencher. When OCP is photoactivated by strong blue-green light, it is able to dissipate excess energy as heat by interacting with phycobilisomes.
View Article and Find Full Text PDFHigh light can be lethal for photosynthetic organisms. Similar to plants, most cyanobacteria protect themselves from high irradiance by increasing thermal dissipation of excess absorbed energy. The photoactive soluble orange carotenoid protein (OCP) is essential for the triggering of this photoprotective mechanism.
View Article and Find Full Text PDFExcess light is harmful for photosynthetic organisms. The cyanobacterium Synechocystis PCC 6803 protects itself by dissipating the excess of energy absorbed by the phycobilisome, the water-soluble antenna of Photosystem II, into heat decreasing the excess energy arriving to the reaction centers. Energy dissipation results in a detectable decrease of fluorescence.
View Article and Find Full Text PDFIn response to iron deficiency, cyanobacteria synthesize the iron stress-induced chlorophyll binding protein IsiA. This protein protects cyanobacterial cells against iron stress. It has been proposed that the protective role of IsiA is related to a blue light-induced nonphotochemical fluorescence quenching (NPQ) mechanism.
View Article and Find Full Text PDFIn gram-negative bacteria, like Rhodobacter capsulatus, about 10 membrane-bound components (CcmABCDEFGHI and CcdA) are required for periplasmic maturation of c-type cytochromes. These components perform the chaperoning and thio-oxidoreduction of the apoproteins as well as the delivery and ligation of the heme cofactors. In the absence of any of these components, including CcmI, proposed to act as an apocytochrome c chaperone, R.
View Article and Find Full Text PDF