A series of surfactants were designed and synthesized for use as clay modification reagents to investigate the impact of their chemical structure on the nanocomposites morphology obtained following polymerization. The behavior of the surfactant-modified clays at three different stages were investigated: after ion exchange, following dispersion in styrene monomer, and once polymerization was complete. The propensity of the styrene monomer to swell the surfactant-modified clay was observed to be a useful indicator of compatibility and predictor of the resultant polystyrene nanocomposite morphology which was directly observed using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (TEM).
View Article and Find Full Text PDFA combination of cyclic voltammetry (CV), UV-vis-NIR spectroscopy and spectroelectrochemistry, hyper-Rayleigh scattering (HRS) [including depolarization studies], Z-scan and degenerate four-wave mixing (DFWM) [including studies employing an optically transparent thin-layer electrochemical (OTTLE) cell to effect electrochemical switching of nonlinearity], pump-probe, and electroabsorption (EA) measurements have been used to comprehensively investigate the electronic, linear optical, and nonlinear optical (NLO) properties of nanoscopic pi-delocalizable electron-rich alkynylruthenium dendrimers, their precursor dendrons, and their linear analogues. CV, UV-vis-NIR spectroscopy, and UV-vis-NIR spectroelectrochemistry reveal that the reversible metal-centered oxidation processes in these complexes are accompanied by strong linear optical changes, "switching on" low-energy absorption bands, the frequency of which is tunable by ligand replacement. HRS studies at 1064 nm employing nanosecond pulses reveal large nonlinearities for these formally octupolar dendrimers; depolarization measurements are consistent with lack of coplanarity upon pi-framework extension through the metal.
View Article and Find Full Text PDFThe dispersion of cubic nonlinearity in the organometallic dendrimer 1,3,5-(3,5-{trans-[(dppe)2(4-O2NC6H4CC)RuCC]}2C6H3CCC6H4-4-CC)3C6H3 can be understood in terms of an interplay of two-photon absorption and absorption saturation. Simple dispersion relations reproduce the behavior of both the real and imaginary components of the hyperpolarizability.
View Article and Find Full Text PDFA combination of cyclic voltammetry, UV-vis-NIR spectroelectrochemistry, time-dependent density functional theory (TD-DFT), and Z-scan measurements employing a modified optically transparent thin-layer electrochemical (OTTLE) cell has been used to identify and assign intense transitions of metal alkynyl complexes at technologically important wavelengths in the oxidized state and to utilize these transitions to demonstrate a facile electrochromic switching of optical nonlinearity. Cyclic voltammetric data for the ruthenium(II) complexes trans-[RuXY(dppe)(2)] [dppe = 1,2-bis(diphenylphosphino)ethane, X = Cl, Y = Cl (1), Ctbd1;CPh (2), 4-Ctbd1;CC(6)H(4)Ctbd1;CPh (3); X = Ctbd1;CPh, Y = Ctbd1;CPh (4), 4-Ctbd1;CC(6)H(4)Ctbd1;CPh (5)] show a quasi-reversible oxidation at 0.50-0.
View Article and Find Full Text PDF