The human microbiome is recognized as a key factor in health and disease. This has been further corroborated by identifying changes in microbiome composition and function as a novel hallmark in cancer. These effects are exerted through microbiome interactions with host cells, impacting a wide variety of developmental and physiological processes.
View Article and Find Full Text PDFScope: Personal care products containing hydrolyzed gluten have been linked to spontaneous sensitization through the skin, however the impact of the hydrolysate characteristics on the sensitizing capacity is generally unknown.
Methods And Results: The physicochemical properties of five different wheat-derived gluten products (one unmodified, one enzyme hydrolyzed, and three acid hydrolyzed) are investigated, and the skin sensitizing capacity is determined in allergy-prone Brown Norway rats. Acid hydrolyzed gluten products exhibited the strongest intrinsic sensitizing capacity via the skin.
Gliadins are major wheat allergens. Their treatment by acid or enzymatic hydrolysis has been shown to modify their allergenic potential. As the interaction of food proteins with dendritic cells (DCs) is a key event in allergic sensitization, we wished to investigate whether deamidation and enzymatic hydrolysis influence gliadin processing by DC and to examine the capacity of gliadins to activate DCs.
View Article and Find Full Text PDFMol Nutr Food Res
September 2018
Scope: Food allergies result from a complex immune response involving both innate and adaptive immune cells. Major proteins of wheat flour, gliadins, appear to be important allergens, and their characteristics can influence the allergic response. This study investigates the immune reaction when developing a food allergy to gliadins in native, deamidated, or hydrolyzed forms.
View Article and Find Full Text PDF