Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a "topos," which represents the regulatory landscape around gene promoters.
View Article and Find Full Text PDFThe insertion of DNA elements within genomes underpins both genetic diversity and disease when unregulated. Most of DNA insertions are not random and the physical mechanisms underlying the integration site selection are poorly understood. Here, we perform Molecular Dynamics simulations to study the insertion of DNA elements, such as viral DNA or transposons, into naked DNA or chromatin substrates.
View Article and Find Full Text PDF