Publications by authors named "Clayton D Scott"

There is substantial interest in developing machine-based methods that reliably distinguish patients from healthy controls using high dimensional correlation maps known as (FC's) generated from resting state fMRI. To address the dimensionality of FC's, the current body of work relies on feature selection techniques that are blind to the spatial structure of the data. In this paper, we propose to use the fused Lasso regularized support vector machine to explicitly account for the 6-D structure of the FC (defined by pairs of points in 3-D brain space).

View Article and Find Full Text PDF

This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as cross-validation, can lead to poor classifier performance.

View Article and Find Full Text PDF
L2 kernel classification.

IEEE Trans Pattern Anal Mach Intell

October 2010

Nonparametric kernel methods are widely used and proven to be successful in many statistical learning problems. Well-known examples include the kernel density estimate (KDE) for density estimation and the support vector machine (SVM) for classification. We propose a kernel classifier that optimizes the L2 or integrated squared error (ISE) of a "difference of densities.

View Article and Find Full Text PDF