Publications by authors named "Clay Tabor"

Atmospheric rivers (ARs) bring concentrated rainfall and flooding to the western United States (US) and are hypothesized to have supported sustained hydroclimatic changes in the past. However, their ephemeral nature makes it challenging to document ARs in climate models and estimate their contribution to hydroclimate changes recorded by time-averaged paleoclimate archives. We present new climate model simulations of Heinrich Stadial 1 (HS1; 16,000 years before the present), an interval characterized by widespread wetness in the western US, that demonstrate increased AR frequency and winter precipitation sourced from the southeastern North Pacific.

View Article and Find Full Text PDF

Very high tropical alpine ice cores provide a distinct paleoclimate record for climate changes in the middle and upper troposphere. However, the climatic interpretation of a key proxy, the stable water oxygen isotopic ratio in ice cores (δO), remains an outstanding problem. Here, combining proxy records with climate models, modern satellite measurements, and radiative-convective equilibrium theory, we show that the tropical δO is an indicator of the temperature of the middle and upper troposphere, with a glacial cooling of -7.

View Article and Find Full Text PDF

The winter and summer monsoons in Southeast Asia are important but highly variable sources of rainfall. Current understanding of the winter monsoon is limited by conflicting proxy observations, resulting from the decoupling of regional atmospheric circulation patterns and local rainfall dynamics. These signals are difficult to decipher in paleoclimate reconstructions.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied past climate changes in northeast Mexico to understand weather patterns better.
  • They used data from a special kind of rock formation called speleothems, which helped them look back over 57,000 years in time.
  • Their findings showed that certain ocean temperatures affected rainfall patterns, especially dry periods, but how these things are connected is still being discussed.
View Article and Find Full Text PDF

The Pacific cold tongue annual cycle in sea surface temperature is presumed to be driven by Earth's axial tilt (tilt effect), and thus its phasing should be fixed relative to the calendar. However, its phase and amplitude change dramatically and consistently under various configurations of orbital precession in several Earth System models. Here, we show that the cold tongue possesses another annual cycle driven by the variation in Earth-Sun distance (distance effect) from orbital eccentricity.

View Article and Find Full Text PDF

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change.

View Article and Find Full Text PDF

A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes.

View Article and Find Full Text PDF

Goldblatt argues that a decrease in pressure broadening of absorption lines in an atmosphere with low oxygen leads to an increase in outgoing longwave radiation and atmospheric cooling. We demonstrate that cloud and water vapor feedbacks in a global climate model compensate for these decreases and lead to atmospheric warming.

View Article and Find Full Text PDF

The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: