Regulatory guidelines for tissue engineered products require stringent characterization during production and necessitate the development of novel, non-destructive methods to quantify key functional parameters for clinical translation. Traditional assessments of engineered tissues are destructive, expensive, and time consuming. Here, we introduce a non-destructive, inexpensive, and rapid sampling and analysis system that can continuously monitor the mechanical, biochemical, and structural properties of a single sample over extended periods of time.
View Article and Find Full Text PDFThere is a critical need to develop noninvasive, nondestructive methods for assessing the quality of engineered constructs prior to implantation. Currently, the composition and maturity of engineered tissues are assessed using destructive, costly, and time-consuming biochemical and mechanical analyses. The goal of this study was to use noninvasive, multimodal imaging to monitor osteogenic differentiation and matrix deposition by human mesenchymal stem/stromal cells (MSCs) during in vitro culture.
View Article and Find Full Text PDF