Publications by authors named "Clay Marsh"

Background: Identifying predictors of drug use recurrence (DUR) is critical to combat the addiction epidemic. Wearable devices and phone-based applications for obtaining self-reported assessments in the patient's natural environment (e.g.

View Article and Find Full Text PDF

Importance: West Virginia prioritized SARS-CoV-2 vaccine delivery to nursing home facilities because of increased risk of severe illness in elderly populations. However, the persistence and protective role of antibody levels remain unclear.

Objective: To examine the persistence of humoral immunity after COVID-19 vaccination and the association of SARS-CoV-2 antibody levels and subsequent infection among nursing home residents and staff.

View Article and Find Full Text PDF

Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.

View Article and Find Full Text PDF

Conventional testing and diagnostic methods for infections like SARS-CoV-2 have limitations for population health management and public policy. We hypothesize that daily changes in autonomic activity, measured through off-the-shelf technologies together with app-based cognitive assessments, may be used to forecast the onset of symptoms consistent with a viral illness. We describe our strategy using an AI model that can predict, with 82% accuracy (negative predictive value 97%, specificity 83%, sensitivity 79%, precision 34%), the likelihood of developing symptoms consistent with a viral infection three days before symptom onset.

View Article and Find Full Text PDF

Our previous study found that zinc finger protein 71 (ZNF71) mRNA expression was associated with chemosensitivity and its protein expression was prognostic of non-small-cell lung cancer (NSCLC). The Krüppel associated box (KRAB) transcriptional repression domain is commonly present in human zinc finger proteins, which are linked to imprinting, silencing of repetitive elements, proliferation, apoptosis, and cancer. This study revealed that had a significantly higher expression than the -less isoform in NSCLC tumors ( = 197) and cell lines ( = 117).

View Article and Find Full Text PDF

Globally, stroke is a leading cause of death and disability. Traditional risk factors like hypertension, diabetes, and obesity do not fully account for all stroke cases. Recent infection is regarded as changes in systemic immune signaling, which can increase thrombosis formation and other stroke risk factors.

View Article and Find Full Text PDF

COVID-19 pandemic has devastated large urban areas across the country. Most rural areas have so far been able to avoid the initial surge in cases due to the low population density. However, as the pandemic advances, rural areas are at an increased risk for the second wave of the epidemic.

View Article and Find Full Text PDF

Tie2-expressing monocytes/macrophages (TEMs) are a distinct subset of proangiogenic monocytes selectively recruited to tumors in breast cancer. Because of the hypoxic nature of solid tumors, we investigated if oxygen, via hypoxia-inducible transcription factors HIF-1α and HIF-2α, regulates TEM function in the hypoxic tumor microenvironment. We orthotopically implanted PyMT breast tumor cells into the mammary fat pads of syngeneic LysMcre, HIF-1α /LysMcre, or HIF-2α /LysMcre mice and evaluated the tumor TEM population.

View Article and Find Full Text PDF

Psychological stressors have been implicated in the progression of various tumor types. We investigated a role for stress in tumor immune cell chemotaxis in the B16F10 mouse model of malignant melanoma. We exposed female mice to 6-hour periods of restraint stress (RST) for 7 days, then implanted B16F10 malignant melanoma tumor cells and continued the RST paradigm for 14 additional days.

View Article and Find Full Text PDF

The etiology and pathogenesis of pulmonary fibrosis is poorly understood. We and others reported that M-CSF/CSF-1, M-CSF-R and downstream AKT activation plays an important role in lung fibrosis in mice models and in IPF patients. To understand potential molecular pathways used by M-CSF-R activation to direct lung fibrosis, we used a novel transgenic mouse model that expresses a constitutively-active form of AKT, myristoylated AKT (Myr-Akt), driven by the (M-CSF-R) promoter.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are mRNA-containing cell fragments shed into circulation during pathophysiological events. DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) regulate gene expression by modifying DNA methylation and altering transcription. Sepsis is a systemic insult resulting in vascular dysfunction, which can lead to shock and death.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a fatal, genetic disorder that critically affects the lungs and is directly caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR function. Macroautophagy/autophagy is a highly regulated biological process that provides energy during periods of stress and starvation. Autophagy clears pathogens and dysfunctional protein aggregates within macrophages.

View Article and Find Full Text PDF

We previously demonstrated that decreased miR-17∼92 cluster expression was 1) present in lungs from human infants who died with bronchopulmonary dysplasia (BPD); 2) inversely correlated with DNA methyltransferase (DNMT) expression and promoter methylation; and 3) correlated with a subsequent diagnosis of BPD at 36 wk gestational age. We tested the hypothesis that plasma miR-17 levels would be lowest in infants who ultimately develop severe BPD. Secondly, we utilized our well-characterized murine model of severe BPD that combines perinatal inflammation with postnatal hyperoxia to test the hypothesis that alterations in lung miR-17∼92, DNMT, and promoter methylation in our model would mirror our findings in tissues from premature human infants.

View Article and Find Full Text PDF

Autophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes.

View Article and Find Full Text PDF

Phosphatase and tensin homolog (Pten) is a negative regulator of cell proliferation and growth. Using a Cre-recombinase approach with Lox sequences flanking the fibroblast-specific protein 1 (Fsp1 aka S100A4; a mesenchymal marker), we probed sites of expression using a β-galactosidase Rosa26(LoxP) reporter allele; the transgene driving deletion of Pten (exons 4-5) was found throughout the brain parenchyma and pituitary, suggesting that deletion of Pten in Fsp1-positive cells may influence behavior. Because CNS-specific deletion of Pten influences social and anxiety-like behaviors and S100A4 is expressed in astrocytes, we predicted that loss of Pten in Fsp1-expressing cells would result in deficits in social interaction and increased anxiety.

View Article and Find Full Text PDF

Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration, management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors that contribute to health and disease risk.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology, and life expectancy of 3-5 years after diagnosis. The incidence rate in the United States is estimated as high as 15 per 100,000 persons per year. The disease is characterized by repeated injury to the alveolar epithelium, resulting in inflammation and deregulated repair, leading to scarring of the lung tissue, resulting in progressive dyspnea and hypoxemia.

View Article and Find Full Text PDF

Rationale: Bronchopulmonary dysplasia remains a significant cause of neonatal morbidity; however, the identification of novel targets to predict or prevent the development of bronchopulmonary dysplasia remains elusive. Proper microRNA (miR)-17∼92 cluster is necessary for normal lung development, and alterations in expression are reported in other pulmonary diseases. The overall hypothesis for our work is that altered miR-17∼92 cluster expression contributes to the molecular pathogenesis of bronchopulmonary dysplasia.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a progressive decline in lung function which can be attributed to excessive scarring, inflammation and airway remodelling. Mannose-6-phosphate (M6P) is a strong inhibitor of fibrosis and its administration has been associated with beneficial effects in tendon repair surgery as well as nerve repair after injury. Given this promising therapeutic approach we developed an improved analogue of M6P, namely PXS64, and explored its anti-fibrotic effects in vitro.

View Article and Find Full Text PDF

Background: We have previously shown that critically ill children transfused with red blood cells (RBCs) of longer storage durations have more suppressed monocyte function after transfusion compared to children transfused with fresher RBCs and that older stored RBCs directly suppress monocyte function in vitro, through unknown mechanisms. We hypothesized that RBC-derived microvesicles (MVs) were responsible for monocyte suppression.

Study Design And Methods: To determine the role of stored RBC unit-derived MVs, we cocultured monocytes with supernatants, isolated MVs, or supernatants that had been depleted of MVs from prestorage leukoreduced RBCs that had been stored for either 7 or 30 days.

View Article and Find Full Text PDF

: Cardiovascular disease is the number 1 cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure. Cell therapy (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart.

View Article and Find Full Text PDF

The four variables, hypoxia, acidity, high glutathione (GSH) concentration and fast reducing rate (redox) are distinct and varied characteristics of solid tumors compared to normal tissue. These parameters are among the most significant factors underlying the metabolism and physiology of solid tumors, regardless of their type or origin. Low oxygen tension contributes to both inhibition of cancer cell proliferation and therapeutic resistance of tumors; low extracellular pH, the reverse of normal cells, mainly enhances tumor invasion; and dysregulated GSH and redox potential within cancer cells favor their proliferation.

View Article and Find Full Text PDF

The ETS-family transcription factors Ets1 and Ets2 are evolutionarily conserved effectors of the RAS/ERK signaling pathway, but their function in Ras cellular transformation and biology remains unclear. Taking advantage of Ets1 and Ets2 mouse models to generate Ets1/Ets2 double knockout mouse embryonic fibroblasts, we demonstrate that deletion of both Ets1 and Ets2 was necessary to inhibit HrasG12V induced transformation both in vitro and in vivo. HrasG12V expression in mouse embryonic fibroblasts increased ETS1 and ETS2 expression and binding to cis-regulatory elements on the c-Myc proximal promoter, and consequently induced a robust increase in MYC expression.

View Article and Find Full Text PDF