Insect Biochem Mol Biol
December 2024
RNA interference (RNAi) has shown substantial promise as a sustainable pest management solution. However, the efficacy of RNAi-based insecticides heavily relies on advanced nanocarrier-mediated delivery systems. In this study, we modified raw graphene oxide into positively charged nanocarriers (GONs) tailored to bind with double-stranded RNA (dsRNA).
View Article and Find Full Text PDFIntroduction: Insecticidal RNAi is a targeted pest insect population control measure. The specificity of insecticidal RNAi can theoretically be enhanced by using symbiotic bacteria with a narrow host range to deliver RNAi, an approach termed symbiont-mediated RNAi (SMR), a technology we have previously demonstrated in the globally-invasive pest species Western Flower Thrips (WFT).
Methods: Here we examine distribution of the two predominant bacterial symbionts of WFT, BFo1 and BFo2, among genome-sequenced insects.
Insect-specific neurotoxic peptides derived from the venoms of scorpions and spiders can cause acute paralysis and death when injected into insects, offering a promising insecticidal component for insect pest control. However, effective delivery systems are required to help neurotoxic peptides pass through the gut barrier into the hemolymph, where they can act. Here, we investigated the potential of a novel nanocarrier, Drosophila X virus-like particle (DXV-VLP), for delivering a neurotoxin from the scorpion Androctonus australis Hector (AaIT) against the invasive pest fruit fly, Drosophila suzukii.
View Article and Find Full Text PDFVirus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies.
View Article and Find Full Text PDFOwing to the expanding industry of medical Cannabis, we discuss recent milestones in RNA interference (RNAi)-based crop protection research and development that are transferable to medical Cannabis cultivation. Recent and prospective increases in pest pressure in both indoor and outdoor Cannabis production systems, and the need for effective nonchemical pest control technologies (particularly crucial in the context of cultivating plants for medical purposes), are discussed. We support the idea that developing RNAi tactics towards protection of medical Cannabis could play a major role in maximizing success in this continuously expanding industry.
View Article and Find Full Text PDFFecundity is arguably one of the most important life history traits, as it is closely tied to fitness. Most arthropods are recognized for their extreme reproductive capacity. For example, a single female of the oriental fruit fly Bactrocera dorsalis, a highly invasive species that is one of the most destructive agricultural pests worldwide, can lay more than 3000 eggs during its life span.
View Article and Find Full Text PDFRNA interference (RNAi)-based pesticides are promising novel pest management products that might reduce environmental impacts compared to other pesticides. Their sequence-guided mode of action facilitates a high species-selectivity, preventing harm on non-target organisms. However, there is currently no consensus on the minimum needed sequence similarity for efficient RNAi in insects and studies have shown that adverse effects in non-targets cannot always be ruled out a priori.
View Article and Find Full Text PDFAt the post-transcriptional level, microRNAs (miRNAs) play an important role in the regulation of gene expression, thereby influencing the outcome of many biological processes in insects, such as development, reproduction, metamorphosis, immunity, and insecticide resistance. The alteration of miRNA expression by mimic/agomir or inhibitor/antagomir via injection/feeding can lead to pest developmental abnormalities, death, or reduced pesticide resistance, indicating that miRNAs are potential targets for pest control. This review provides an overview of recent advances in understanding the regulatory roles of miRNA in agricultural and public health insect pest, and further highlights the potential of miRNAs as prospective targets in pest control.
View Article and Find Full Text PDFDouble-stranded RNAs (dsRNAs) represent a promising class of biosafe insecticidal compounds. We examined the ability to induce RNA interference (RNAi) in the pollen beetle Brassicogethes aeneus via anther feeding, and compared short-term (3 d) to chronic (17 d) feeding of various concentrations of dsRNA targeting αCOP (dsαCOP). In short-term dsαCOP feeding, only the highest concentration resulted in significant reductions in B.
View Article and Find Full Text PDFRNAi-mediated insect pest management has recently shown promising results against the most serious pest of tomato, the tomato leafminer, . This study aimed to investigate whether dsRNA (ds-) designed to target the gene could cause adverse effects to its biocontrol agent, the mirid predator, Oral exposure of to dsRNA (ds) designed to target - resulted in a 61%, 67% and 55% reduction in its transcript level in comparison to the sucrose, ds and ds treatments, respectively. In addition, significantly higher mortality of 57% was recorded in dstreated when compared to the sucrose (7%), ds (10%) and ds (10%) treatments.
View Article and Find Full Text PDFVariability in RNA-interference (RNAi) efficacy among different insect orders poses a big hurdle in the development of RNAi-based pest control strategies. The activity of double-stranded ribonucleases (dsRNases) in the digestive canal of insects can be one of the critical factors affecting oral RNAi efficacy. Here, the involvement of these dsRNases in the southern green stinkbug was investigated.
View Article and Find Full Text PDFEuropean Union (EU) and global sustainability policies emphasize the need to replace contentious pesticides with safe, efficient, and cost-effective alternatives to ensure sustainable food production. However, R&D for alternatives to contentious pesticides are lagging behind and need to be broadened. Here, we discuss how RNAi-based technology can contribute to pesticide risk reduction.
View Article and Find Full Text PDFThe Neotropical brown stink bug, is one of the most important stink bug pests in leguminous plants in South America. RNAi and CRISPR/Cas9 are important and useful tools in functional genomics, as well as in the future development of new integrated pest management strategies. Here, we explore the use of these technologies as complementing functional genomic tools in .
View Article and Find Full Text PDFIn insects, the identity of body segments is controlled by homeotic genes and the knockdown of these genes during embryogenesis can lead to an abnormal development and/or atypical phenotypes. The main goal of this study was to investigate the involvement of labial (lab), deformed (dfd), sex comb reduced (scr), extradenticle (exd) and proboscipedia (pb) in rostrum development in the Neotropical brown stink bug Euschistus heros, using parental RNAi (pRNAi). To achieve this objective, 10-days-old adult females were first microinjected with double-stranded RNAs (dsRNA) targeting these five genes.
View Article and Find Full Text PDFSpray-induced gene silencing (SIGS) is a potential strategy for agricultural pest management, whereby nucleotide sequence-specific double-stranded RNA (dsRNA) can be sprayed onto a crop; the desired effect being a consumption of dsRNA by the target pest, and subsequent gene silencing-induced mortality. Nucleotide sequence-specificity is the basis for dsRNA's perceived biosafety. A biosafe approach to pollen beetle () management in oilseed rape () agroecosystems is needed.
View Article and Find Full Text PDFInsect neuropeptides regulate various physiological processes, such as reproduction, feeding, growth and development, and have been considered as viable targets in the development of alternative strategies for pest control. Amongst these neuropeptides is myosuppressin (MS), a very conserved neuropeptide that has been reported to regulate cardiac and skeletal muscle contractility, feeding and pupal diapause in insects. In this study, we investigated the involvement of MS in fecundity in a notorious defoliator of potato and other solanaceous plants, the Colorado potato beetle (CPB), Leptinotarsa decemlineata.
View Article and Find Full Text PDFIn this editorial for the Special Issue on 'RNAi in insect pest control', three important applications of RNA interference (RNAi) in insects are briefly discussed and linked to the different studies published in this Special Issue. The discovery of the RNAi mechanism revolutionized entomological research, as it presented researchers with a tool to knock down genes, which is easily applicable in a wide range of insect species. Furthermore, RNAi also provides crop protection with a novel and promising pest control mode-of-action.
View Article and Find Full Text PDFDue to potential health and environmental risks of synthetic pesticides, coupled with their non-selectivity and pest resistance, there has been increasing demand for safer and biodegradable alternatives for insect pest management. Botanical pesticides have emerged as a promising alternative due to their non-persistence, high selectivity, and low mammalian toxicity. Six Meliaceae plant species, , and have been subject to botanical pesticide evaluation This review focuses on , which has not been intensively studied.
View Article and Find Full Text PDFLeptinotarsa decemlineata (Say), commonly known as the Colorado potato beetle (CPB), is an agricultural important pest for potatoes and other solanaceous plants. The CRISPR/Cas system is an efficient genome editing technology, which could be exploited to study the biology of CPB and possibly also lead to the development of better environmentally friendly pest management strategies. However, the use of CRISPR/Cas9 has been limited to only a few model insects.
View Article and Find Full Text PDFAphids are agricultural pest insects that transmit viruses and cause feeding damage on a global scale. Current pest control practices involving the excessive use of synthetic insecticides over many years have resulted in aphid resistance to a number of pesticides. In nature, plants produce secondary metabolites during their interaction with insects and these metabolites can act as toxicants, antifeedants, anti-oviposition agents and deterrents towards the insects.
View Article and Find Full Text PDFPiwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes.
View Article and Find Full Text PDF