Publications by authors named "Claustre H"

Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time.

View Article and Find Full Text PDF

Autonomous and cabled platforms are revolutionizing our understanding of ocean systems by providing 4D monitoring of the water column, thus going beyond the reach of ship-based surveys and increasing the depth of remotely sensed observations. However, very few commercially available sensors for such platforms are capable of monitoring large particulate matter (100-2000 m) and plankton despite their important roles in the biological carbon pump and as trophic links from phytoplankton to fish. Here, we provide details of a new, commercially available scientific camera-based particle counter, specifically designed to be deployed on autonomous and cabled platforms: the Underwater Vision Profiler 6 (UVP6).

View Article and Find Full Text PDF

Biogeographical classifications of the global ocean generalize spatiotemporal trends in species or biomass distributions across discrete ocean biomes or provinces. These classifications are generally based on a combination of remote-sensed proxies of phytoplankton biomass and global climatologies of biogeochemical or physical parameters. However, these approaches are limited in their capacity to account for subsurface variability in these parameters.

View Article and Find Full Text PDF

Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0-250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components.

View Article and Find Full Text PDF

Deep Chlorophyll Maxima (DCM) are ubiquitous features in stratified oceanic systems. Their establishment and maintenance result from hydrographical stability favoring specific environmental conditions with respect to light and nutrient availability required for phytoplankton growth. This stability can potentially be challenged by mesoscale eddies impacting the water column's vertical structure and thus the environmental parameters that condition the subsistence of DCMs.

View Article and Find Full Text PDF

Stratified oceanic systems are characterized by the presence of a so-called Deep Chlorophyll a Maximum (DCM) not detectable by ocean color satellites. A DCM can either be a phytoplankton (carbon) biomass maximum (Deep Biomass Maximum, DBM), or the consequence of photoacclimation processes (Deep photoAcclimation Maximum, DAM) resulting in the increase of chlorophyll a per phytoplankton carbon. Even though these DCM (further qualified as either DBMs or DAMs) have long been studied, no global-scale assessment has yet been undertaken and large knowledge gaps still remain in relation to the environmental drivers responsible for their formation and maintenance.

View Article and Find Full Text PDF

Coccolithophores (calcifying phytoplankton) form extensive blooms in temperate and subpolar oceans as evidenced from ocean-color satellites. This study examines the potential to detect coccolithophore blooms with BioGeoChemical-Argo (BGC-Argo) floats, autonomous ocean profilers equipped with bio-optical and physicochemical sensors. We first matched float data to ocean-color satellite data of calcite concentration to select floats that sampled coccolithophore blooms.

View Article and Find Full Text PDF

It is widely believed that during winter and spring, Arctic marine phytoplankton cannot grow until sea ice and snow cover start melting and transmit sufficient irradiance, but there is little observational evidence for that paradigm. To explore the life of phytoplankton during and after the polar night, we used robotic ice-avoiding profiling floats to measure ocean optics and phytoplankton characteristics continuously through two annual cycles in Baffin Bay, an Arctic sea that is covered by ice for 7 months a year. We demonstrate that net phytoplankton growth occurred even under 100% ice cover as early as February and that it resulted at least partly from photosynthesis.

View Article and Find Full Text PDF

During the North Atlantic Aerosols and Marine Ecosystems Study in the western North Atlantic, float-based profiles of fluorescent dissolved organic matter and backscattering exhibited distinct spike layers at  300 m. The locations of the spikes were at depths similar or shallower to where a ship-based scientific echo sounder identified layers of acoustic backscatter, an Underwater Vision Profiler detected elevated concentration of zooplankton, and mesopelagic fish were sampled by a mesopelagic net tow. The collocation of spike layers in bio-optical properties with mesopelagic organisms suggests that some can be detected with float-based bio-optical sensors.

View Article and Find Full Text PDF

A critical driver of the ocean carbon cycle is the downward flux of sinking organic particles, which acts to lower the atmospheric carbon dioxide concentration. This downward flux is reduced by more than 70% in the mesopelagic zone (100 to 1000 meters of depth), but this loss cannot be fully accounted for by current measurements. For decades, it has been hypothesized that the missing loss could be explained by the fragmentation of large aggregates into small particles, although data to test this hypothesis have been lacking.

View Article and Find Full Text PDF

The North Atlantic subtropical gyre (NASTG) is a model of the future ocean under climate change. Ocean warming signals are hidden within the blue color of these clear waters and can be tracked by understanding the dynamics among phytoplankton chlorophyll ([Chl]) and colored dissolved organic matter (CDOM). In NASTG, [Chl] and CDOM are strongly correlated.

View Article and Find Full Text PDF

Biogeochemical-Argo (BGC-Argo) is a network of profiling floats carrying sensors that enable observation of as many as six essential biogeochemical and bio-optical variables: oxygen, nitrate, pH, chlorophyll , suspended particles, and downwelling irradiance. This sensor network represents today's most promising strategy for collecting temporally and vertically resolved observations of biogeochemical properties throughout the ocean. All data are freely available within 24 hours of transmission.

View Article and Find Full Text PDF

Hydrothermal activity is significant in regulating the dynamics of trace elements in the ocean. Biogeochemical models suggest that hydrothermal iron might play an important role in the iron-depleted Southern Ocean by enhancing the biological pump. However, the ability of this mechanism to affect large-scale biogeochemistry and the pathways by which hydrothermal iron reach the surface layer have not been observationally constrained.

View Article and Find Full Text PDF

The ocean's ability to sequester carbon away from the atmosphere exerts an important control on global climate. The biological pump drives carbon storage in the deep ocean and is thought to function via gravitational settling of organic particles from surface waters. However, the settling flux alone is often insufficient to balance mesopelagic carbon budgets or to meet the demands of subsurface biota.

View Article and Find Full Text PDF

The timing of phytoplankton growth (phenology) in tropical oceans is a crucial factor influencing the survival rates of higher trophic levels, food web structure and the functioning of coral reef ecosystems. Phytoplankton phenology is thus categorised as an 'ecosystem indicator', which can be utilised to assess ecosystem health in response to environmental and climatic perturbations. Ocean-colour remote sensing is currently the only technique providing global, long-term, synoptic estimates of phenology.

View Article and Find Full Text PDF

In situ chlorophyll fluorometers have been used to quantify the distribution of chlorophyll concentration in natural waters for decades. However, chlorophyll fluorescence is depressed during daylight hours due to non-photochemical quenching (NPQ). Corrections attempted to date have provided improvement but still remain unsatisfactory, often over-estimating the expected value.

View Article and Find Full Text PDF

In the original version of this Article, the data accession https://doi.org/10.17882/42182 was omitted from the Data Availability statement.

View Article and Find Full Text PDF

The North Atlantic bloom corresponds to a strong seasonal increase in phytoplankton that produces organic carbon through photosynthesis. It is still debated what physical and biological conditions trigger the bloom, because comprehensive time series of the vertical distribution of phytoplankton biomass are lacking. Vertical profiles from nine floats that sampled the waters of the North Atlantic every few days for a couple of years reveal that phytoplankton populations start growing in early winter at very weak rates.

View Article and Find Full Text PDF

The "mesopelagic" is the region of the ocean between about 100 and 1000 m that harbours one of the largest ecosystems and fish stocks on the planet1,2. This vastly unexplored ecosystem is believed to be mostly sustained by chemical energy, in the form of fast-sinking particulate organic carbon, supplied by the biological carbon pump3. Yet, this supply appears insufficient to match mesopelagic metabolic demands4-6.

View Article and Find Full Text PDF

The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters.

View Article and Find Full Text PDF

Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions.

View Article and Find Full Text PDF

Natural populations of the marine cyanobacterium Prochlorococcus exist as two main ecotypes, inhabiting different layers of the ocean's photic zone. These so-called high light- (HL-) and low light (LL-) adapted ecotypes are both physiologically and genetically distinct. HL strains can be separated into two major clades (HLI and HLII), whereas LL strains are more diverse.

View Article and Find Full Text PDF

Spectral absorption coefficients of phytoplankton can now be derived, under some assumptions, from hyperspectral ocean color measurements and thus become accessible from space. In this study, multilayer perceptrons have been developed to retrieve information on the pigment composition and size structure of phytoplankton from these absorption spectra. The retrieved variables are the main pigment groups (chlorophylls a, b, c, and photosynthetic and nonphotosynthetic carotenoids) and the relative contributions of three algal size classes (pico-, nano-, and microphytoplankton) to total chlorophyll a.

View Article and Find Full Text PDF