Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating embryos.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Convergent extension of epithelial tissue is a key motif of animal morphogenesis. On a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells adhere to each other and maintain the tissue layer under actively generated internal tension. To resolve this apparent paradox, we formulate a model in which tissue flow in the tension-dominated regime occurs through adiabatic remodeling of force balance in the network of adherens junctions.
View Article and Find Full Text PDFMorphogenesis is the process whereby the body of an organism develops its target shape. The morphogen BMP is known to play a conserved role across bilaterian organisms in determining the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cytoskeletal proteins driving morphogenetic flow remains an open question.
View Article and Find Full Text PDFMorphogenesis is the process whereby the body of an organism develops its target shape. The morphogen BMP is known to play a conserved role across bilaterian organisms in determining the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cytoskeletal proteins driving morphogenetic flow remains an open question.
View Article and Find Full Text PDFConvergent extension of epithelial tissue is a key motif of animal morphogenesis. On a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells adhere to each other and maintain the tissue layer under actively generated internal tension. To resolve this apparent paradox, we formulate a model in which tissue flow in the tension-dominated regime occurs through adiabatic remodeling of force balance in the network of adherens junctions.
View Article and Find Full Text PDFShape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating embryos.
View Article and Find Full Text PDFThe actomyosin cytoskeleton is a crucial driver of morphogenesis. Yet how the behavior of large-scale cytoskeletal patterns in deforming tissues emerges from the interplay of geometry, genetics, and mechanics remains incompletely understood. Convergent extension in embryos provides the opportunity to establish a quantitative understanding of the dynamics of anisotropic non-muscle myosin II.
View Article and Find Full Text PDFMorphogenesis, the coordinated execution of developmental programs that shape embryos, raises many fundamental questions at the interface between physics and biology. In particular, how the dynamics of active cytoskeletal processes are coordinated across the surface of entire embryos to generate global cell flows is poorly understood. Two distinct regulatory principles have been identified: genetic programs and dynamic response to mechanical stimuli.
View Article and Find Full Text PDFInterfaces between topologically distinct phases of matter reveal a remarkably rich phenomenology. To go beyond effective field theories, we study the prototypical example of such an interface between two Abelian states, namely the Laughlin and Halperin states. Using matrix product states, we propose a family of model wavefunctions for the whole system including both bulks and the interface.
View Article and Find Full Text PDFInterfaces between topologically distinct phases of matter reveal a remarkably rich phenomenology. We study the experimentally relevant interface between a Laughlin phase at filling factor ν = 1/3 and a Halperin 332 phase at filling factor ν = 2/5. Based on our recent construction of chiral topological interfaces (Nat.
View Article and Find Full Text PDFNovel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE) are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50) of 1.
View Article and Find Full Text PDFOvarian cancer is particularly insidious in nature. Its ability to go undetected until late stages coupled with its non-descript signs and symptoms make it the seventh leading cause of cancer related deaths in women. Additionally, the lack of sensitive diagnostic tools and resistance to widely accepted chemotherapy regimens make ovarian cancer devastating to patients and families and frustrating to medical practitioners and researchers.
View Article and Find Full Text PDFInt J Offender Ther Comp Criminol
June 2003
The prediction, control, and prevention of police corruption represent pervasive and enduring problems. Researchers have suggested that intervention at the preemployment screening stage may be the best solution. However, investigators have acknowledged that existing assessment practices are flawed.
View Article and Find Full Text PDFAn initially stable 85Rb Bose-Einstein condensate (BEC) was subjected to a carefully controlled magnetic field pulse near a Feshbach resonance. This pulse probed the strongly interacting regime for the BEC, with the diluteness parameter (na(3)) ranging from 0.01 to 0.
View Article and Find Full Text PDFRecent advances in the precise control of ultracold atomic systems have led to the realisation of Bose Einstein condensates (BECs) and degenerate Fermi gases. An important challenge is to extend this level of control to more complicated molecular systems. One route for producing ultracold molecules is to form them from the atoms in a BEC.
View Article and Find Full Text PDFWhen atoms in a gas are cooled to extremely low temperatures, they will-under the appropriate conditions-condense into a single quantum-mechanical state known as a Bose-Einstein condensate. In such systems, quantum-mechanical behaviour is evident on a macroscopic scale. Here we explore the dynamics of how a Bose-Einstein condensate collapses and subsequently explodes when the balance of forces governing its size and shape is suddenly altered.
View Article and Find Full Text PDFThe point of instability of a Bose-Einstein condensate (BEC) due to attractive interactions was studied. Stable 85Rb BECs were created and then caused to collapse by slowly changing the atom-atom interaction from repulsive to attractive using a Feshbach resonance. At a critical value, an abrupt transition was observed in which atoms were ejected from the condensate.
View Article and Find Full Text PDFInelastic collision rates for ultracold 85Rb atoms in the F = 2, m(f) = -2 state have been measured as a function of magnetic field. At 250 gauss (G), the two- and three-body loss rates were measured to be K2 = (1.87+/-0.
View Article and Find Full Text PDFBose-Einstein condensation has been achieved in a magnetically trapped sample of 85Rb atoms. Long-lived condensates of up to 10(4) atoms have been produced by using a magnetic-field-induced Feshbach resonance to reverse the sign of the scattering length. This system provides new opportunities for the study of condensate physics.
View Article and Find Full Text PDF