Publications by authors named "Claus-Henning Nagel"

During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth.

View Article and Find Full Text PDF

Herpes Simplex Virus type 2 (HSV-2) is a neurotropic human pathogen. Upon de novo infection, the viral infected cell protein 0 (ICP0) is immediately expressed and interacts with various cellular components during the viral replication cycle. ICP0 is a multifunctional regulatory protein that has been shown to be important for both efficient viral replication and virus reactivation from latency.

View Article and Find Full Text PDF

Therapy or prophylaxis of herpes simplex virus type 2 (HSV-2) infections with the nucleoside analog aciclovir (ACV) can lead to the emergence of drug-resistant HSV-2 strains, particularly in immunocompromised patients. In this context, multiple amino acid (aa) changes can accumulate in the ACV-converting viral thymidine kinase (TK) which hampers sequence-based diagnostics significantly. In this study, the so far unknown or still doubted relevance of several individual aa changes for drug resistance in HSV-2 was clarified.

View Article and Find Full Text PDF

Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice.

View Article and Find Full Text PDF

Background: Chronic infections with herpes simplex virus (HSV) type 1 are highly prevalent in populations worldwide and cause recurrent oral lesions in up to 40% of infected subjects.

Objective: We investigated the antiviral activity of a defined Spirulina platensis microalga extract and of purified calcium spirulan (Ca-SP), a sulfated polysaccharide contained therein.

Methods: The inhibitory effects of HSV-1 were assessed by using a plaque reduction assay and quantitative PCR in a susceptible mammalian epithelial cell line and confirmed in human keratinocytes.

View Article and Find Full Text PDF

Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain.

View Article and Find Full Text PDF

Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2.

View Article and Find Full Text PDF

Bacterial artificial chromosomes (BACs) are suitable vectors not only to maintain the large genomes of herpesviruses in Escherichia coli but also to enable the traceless introduction of any mutation using modern tools of bacterial genetics. To clone a herpes simplex virus genome, a BAC replication origin is first introduced into the viral genome by homologous recombination in eukaryotic host cells. As part of their nuclear replication cycle, genomes of herpesviruses circularize and these replication intermediates are then used to transform bacteria.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17(+))-based replicative vector deleted of the neurovirulence gene γ134.

View Article and Find Full Text PDF

To analyze the subcellular trafficking of herpesvirus capsids, the small capsid protein has been labeled with different fluorescent proteins. Here, we analyzed the infectivity of several HSV1(17(+)) strains in which the N-terminal region of the non-essential small capsid protein VP26 had been tagged at different positions. While some variants replicated with similar kinetics as their parental wild type strain, others were not infectious at all.

View Article and Find Full Text PDF

Hypusine modification of eukaryotic initiation factor 5A (eIF-5A) represents a unique and highly specific post-translational modification with regulatory functions in cancer, diabetes, and infectious diseases. However, the specific cellular pathways that are influenced by the hypusine modification remain largely unknown. To globally characterize eIF-5A and hypusine-dependent pathways, we used an approach that combines large-scale bioreactor cell culture with tandem affinity purification and mass spectrometry: "bioreactor-TAP-MS/MS.

View Article and Find Full Text PDF

Many enveloped viruses, including herpes viruses, hepatitis B virus (HBV), and hepatitis C virus (HCV), and human immunodeficiency virus (HIV), are among the most important human pathogens and are often responsible for coinfections involving ≥2 types of viruses. However, therapies that are effective against multiple virus classes are rare. Here we present a new class of synthetic anti-lipopolysaccharide peptides (SALPs) that bind to heparan sulfate moieties on the cell surface and inhibit infection with a variety of enveloped viruses.

View Article and Find Full Text PDF

The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) immediate-early protein ICP0 is a transcriptional activator with E3 ubiquitin ligase activity that induces the degradation of ND10 proteins, including the promyelocytic leukemia protein (PML) and Sp100. Moreover, ICP0 has a role in the derepression of viral genomes and in the modulation of the host interferon response to virus infection. Here, we report that ICP0 interacts with SIAH-1, a cellular E3 ubiquitin ligase that is involved in multiple cellular pathways and is itself capable of mediating PML degradation.

View Article and Find Full Text PDF

Thirteen different glycoproteins are incorporated into mature herpes simplex virus type 1 (HSV-1) virions. Five of them play important roles during entry, while others intervene during egress of the virus. Although HSV-1 gM is not essential in cell culture, its deletion reduces viral yields and promotes syncytium formation.

View Article and Find Full Text PDF

Dendritic cells (DC), which can be subdivided into different phenotypic and functional subsets, play a pivotal role in the generation of cytotoxic T cell immunity against viral infections. Understanding the modes of Ag acquisition, processing and presentation by DC is essential for the design of effective antiviral vaccines. We aimed to assess the contribution of direct vs cross-presentation for the induction of HSV1-specific CD8(+) T lymphocyte responses in mice.

View Article and Find Full Text PDF

To analyze the assembly of herpes simplex virus type 1 (HSV1) by triple-label fluorescence microscopy, we generated a bacterial artificial chromosome (BAC) and inserted eukaryotic Cre recombinase, as well as beta-galactosidase expression cassettes. When the BAC pHSV1(17(+))blueLox was transfected back into eukaryotic cells, the Cre recombinase excised the BAC sequences, which had been flanked with loxP sites, from the viral genome, leading to HSV1(17(+))blueLox. We then tagged the capsid protein VP26 and the envelope protein glycoprotein D (gD) with fluorescent protein domains to obtain HSV1(17(+))blueLox-GFPVP26-gDRFP and -RFPVP26-gDGFP.

View Article and Find Full Text PDF

After viral fusion, capsids of the neurotropic herpes simplex virus are transported along microtubules (MT) to the nuclear pores for viral genome uncoating, nuclear transcription and replication. After assembly and egress from the nucleus, cytosolic capsids are transported to host membranes for secondary envelopment or to the axon terminal for further viral spread. Using GFP-tagged capsids, Cy3-labelled MT and cytosol, we have reconstituted viral capsid transport in vitro.

View Article and Find Full Text PDF

Incoming viral particles move from the cell surface to sites of viral transcription and replication. By contrast, during assembly and egress, subviral nucleoprotein complexes and virions travel back to the plasma membrane. Because diffusion of large molecules is severely restricted in the cytoplasm, viruses use ATP-hydrolyzing molecular motors of the host for propelling along the microtubules, which are the intracellular highways.

View Article and Find Full Text PDF