The phytohormone auxin is polarly transported in plants by PIN-FORMED (PIN) transporters and controls virtually all growth and developmental processes. Canonical PINs possess a long, largely disordered cytosolic loop. Auxin transport by canonical PINs is activated by loop phosphorylation by certain kinases.
View Article and Find Full Text PDFPlant pathogens pose a high risk of yield losses and threaten food security. Technological and scientific advances have improved our understanding of the molecular processes underlying host-pathogen interactions, which paves the way for new strategies in crop disease management beyond the limits of conventional breeding. Cross-family transfer of immune receptor genes is one such strategy that takes advantage of common plant immune signalling pathways to improve disease resistance in crops.
View Article and Find Full Text PDFD6 PROTEIN KINASE (D6PK) is a polarly localized plasma-membrane-associated kinase from Arabidopsis thaliana that activates polarly distributed PIN-FORMED auxin transporters. D6PK moves rapidly to and from the plasma membrane, independent of its PIN-FORMED targets. The middle D6PK domain, an insertion between kinase subdomains VII and VIII, is required and sufficient for association and polarity of the D6PK plasma membrane.
View Article and Find Full Text PDFThere are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent.
View Article and Find Full Text PDFGATAs are evolutionarily conserved zinc-finger transcription factors from eukaryotes. In plants, GATAs can be subdivided into four classes, A-D, based on their DNA-binding domain, and into further subclasses based on additional protein motifs. B-GATAs with a so-called leucine-leucine-methionine (LLM)-domain can already be found in algae.
View Article and Find Full Text PDFPlants perceive the direction of gravity during skotomorphogenic growth, and of gravity and light during photomorphogenic growth. Gravity perception occurs through the sedimentation of starch granules in shoot endodermal and root columella cells. In this study, we demonstrate that the Arabidopsis thaliana GATA factors GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM-INVOLVED) and GNL/CGA1 (GNC-LIKE/CYTOKININ-RESPONSIVE GATA1) repress starch granule growth and amyloplast differentiation in endodermal cells.
View Article and Find Full Text PDFPlants are an indispensable cornerstone of sustainable global food supply. While immense progress has been made in decoding the genomes of crops in recent decades, the composition of their proteomes, the entirety of all expressed proteins of a species, is virtually unknown. In contrast to the model plant , proteomic analyses of crop plants have often been hindered by the presence of extreme concentrations of secondary metabolites such as pigments, phenolic compounds, lipids, carbohydrates or terpenes.
View Article and Find Full Text PDFGATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined.
View Article and Find Full Text PDFThe directional transport of the phytohormone auxin is required for proper plant development and tropic growth. Auxin cell-to-cell transport gains directionality through the polar distribution of 'canonical' long PIN-FORMED (PIN) auxin efflux carriers. In recent years, AGC kinases, MAP kinases, Ca/CALMODULIN-DEPENDENT PROTEIN KINASE-RELATED KINASEs and receptor kinases have been implicated in the control of PIN activity, polarity and trafficking.
View Article and Find Full Text PDFFrom embryogenesis to fruit formation, almost every aspect of plant development and differentiation is controlled by the cellular accumulation or depletion of auxin from cells and tissues. The respective auxin maxima and minima are generated by cell-to-cell auxin transport via transporter proteins. Differential auxin accumulation as a result of such transport processes dynamically regulates auxin distribution during differentiation.
View Article and Find Full Text PDFAngiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX).
View Article and Find Full Text PDFExocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters.
View Article and Find Full Text PDFSeed dormancy is an adaptive trait defining where and when plants are established. Diverse signals from the environment are used to decide when to initiate seed germination, a process driven by the expansion of cells within the embryo. How these signals are integrated and transduced into the biomechanical changes that drive embryo growth remains poorly understood.
View Article and Find Full Text PDFDELLA proteins are repressors of the gibberellin (GA) hormone signaling pathway that act mainly by regulating transcription factor activities in plants. GAs induce DELLA repressor protein degradation and thereby control a number of critical developmental processes as well as responses to stresses such as cold. The strong effect of cold temperatures on many physiological processes has rendered it difficult to assess, based on phenotypic criteria, the role of GA and DELLAs in plant growth during cold stress.
View Article and Find Full Text PDFCertain regions on the surfaces of developing pollen grains exhibit very limited deposition of pollen wall exine. These regions give rise to pollen apertures, which are highly diverse in their patterns and specific for individual species. pollen develops three equidistant longitudinal apertures.
View Article and Find Full Text PDFInterview with Claus Schwechheimer, who studies the roles of auxin and gibberellin in the regulation of plant growth.
View Article and Find Full Text PDFThe ubiquitin-related protein NEDD8 is conjugated and deconjugated to and from proteins in processes related to ubiquitin conjugation and deconjugation. Neddylation is a well-studied posttranslational modification of Cullin-RING E3 ligases (CRLs). Biochemical and structural studies aiming at understanding the role of NEDD8 in CRL function have now resulted in a convincing model of how neddylation and deneddylation antagonistically regulate CRL stability, conformation, activity as well as degradation substrate receptor exchange.
View Article and Find Full Text PDFEmbryogenesis in flowering plants is initiated by an asymmetric zygote division, generating two daughter cells that are the precursors of different cell lineages. Little is known about the molecular players regulating activation and progression of zygote development, establishment of asymmetry, and the plant-specific process of cell-plate formation. Here, we report the function of the ubiquitin-like modifier DiSUMO-LIKE (DSUL) for early embryo development in maize.
View Article and Find Full Text PDFAuxin controls almost every aspect of plant development. Auxin is distributed within the plant by passive diffusion and active cell-to-cell transport. PIN-FORMED (PIN) auxin efflux transporters are polarly distributed in the plasma membranes of many cells, and knowledge about their distribution can predict auxin transport and explain auxin distribution patterns, even in complex tissues.
View Article and Find Full Text PDF