The need to guarantee the geographical origin of food samples has become imperative in recent years due to the increasing amount of food fraud. Stable isotope ratio analysis permits the characterization and origin control of foodstuffs, thanks to its capability to discriminate between products having different geographical origins and derived from different production systems. The Framework 6 EU-project "TRACE" generated hydrogen (H/H), carbon (C/C), nitrogen (N/N), and sulphur (S/S) isotope ratio data from 227 authentic beef samples.
View Article and Find Full Text PDFMass Spectrometry imaging (MS imaging) provides spatial information for a wide range of compound classes in different sample matrices. We used MS imaging to investigate the distribution of components in fresh and processed food, including meat, dairy and bakery products. The MS imaging workflow was optimized to cater to the specific properties and challenges of the individual samples.
View Article and Find Full Text PDFFood thickeners are carbohydrate additives that can only be determined by long-term, multistep analysis. Fast methods to directly determine thickeners in food matrixes are therefore welcome. In this study, a rapid procedure based on the direct H NMR analysis of food samples dissolved in deuterated water was developed.
View Article and Find Full Text PDFH, C, and O stable isotope ratios and the elemental profile of 267 olive oils and 314 surface waters collected from 8 European sites are presented and discussed. The aim of the study was to investigate if olive oils produced in areas with different climatic and geological characteristics could be discriminated on the basis of isotopic and elemental data. The stable isotope ratios of H, C, and O of olive oils and the ratios of H and O of the relevant surface waters correlated to the climatic (mainly temperature) and geographical (mainly latitude and distance from the coast) characteristics of the provenance sites.
View Article and Find Full Text PDF