Publications by authors named "Claus Michael Lehr"

The application of nanoparticles on a sub-cellular level necessitates an in depth study of their biocompatibility. However, complete characterization of the particles under the physiological conditions relevant for biological evaluation is still lacking. Our goal is therefore to evaluate the possible toxicity aspects of chitosan-modified PLGA nanoparticles on different cell lines and relate them to the parameters affecting the colloidal stability of the nanoparticles.

View Article and Find Full Text PDF

Cationic hyaluronic acid (HA)-modified DOTAP/DOPE liposomes were designed for the targeted delivery of anti-telomerase siRNA to CD44 receptor-expressing lung cancer cells. DOTAP/DOPE liposomes modified with 1%-20% (w/w) HA-DOPE conjugate were obtained by the ethanol injection method. Their size was below 170 nm and they exhibited zeta potentials higher than +50 mV.

View Article and Find Full Text PDF

Purpose: To investigate mechanisms of compound-corneocyte interactions in a combined experimental and theoretical approach.

Materials And Methods: Experimental methods are presented to investigate compound-corneocyte interactions in terms of dissolution within water of hydration and protein binding and to quantify the extent of the concurrent mechanisms. Results are presented for three compounds: caffeine, flufenamic acid, and testosterone.

View Article and Find Full Text PDF

Mankind has inhaled substances for medical and other reasons for thousands of years, notably resulting in the cultural manifestations of tobacco and opium smoking. Over the course of time concepts of pulmonary application, including inhalation devices and drug formulations, have been and still are being continuously developed. State of the art instruments even allow for individualized drug application by adaptation of the inhalation procedure to the breathing pattern of the patient.

View Article and Find Full Text PDF

Biological barriers, typically, represented by epithelial tissues are the main hindrance against uncontrolled uptake of a variety of substances. However, the delivery across a biological barrier is a crucial factor in the development of drugs. As the permeability of macromolecular drugs is very limited, new delivery strategies have to be developed and further improved.

View Article and Find Full Text PDF

The antisense oligonucleotide 2'-O-methyl-RNA is a selective telomerase inhibitor targeting the telomerase RNA component and represents a potential candidate for anticancer therapy. The poor cellular uptake of 2'-O-methyl-RNA is a limiting factor that may contribute to the lack of functional efficacy. To improve delivery of 2'-O-methyl-RNA and consequently antitumoral efficiency in human lung cancer cells, we have investigated several transfection reagents.

View Article and Find Full Text PDF

A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells.

View Article and Find Full Text PDF

Pancreatic stem cells (PSC) have proved their high plasticity by differentiating into cell types of all three germ layers after the formation of organoid bodies. Motivated by this high differentiation potential this study focused on the immanent stem cell, endothelial and epithelial characteristics of PSC to elucidate whether PSC are a possible source for a stem cell-based in vitro model for screening of pharmaceutical substances. Furthermore, it was investigated whether marker expression was influenced by application of protocols for inducing endothelial or epithelial differentiation originating from research with mesenchymal stem cells or by cultivation on extracellular matrices (ECM).

View Article and Find Full Text PDF

Background: Pulmonary cell culture models for the development of new aerosol medicines are attracting increasing interest. Ease of handling, ethical acceptance and high explanatory power are the main advantages of cell culture systems in pulmonary drug research.

Objective: Pulmonary cell culture models are described and evaluated regarding their suitability for the biopharmaceutical characterisation of innovative aerosol medicines.

View Article and Find Full Text PDF

In order to prepare for a validation study to compare percutaneous absorption through reconstructed human epidermis with ex vivo skin absorption through human and animal skin, nine test compounds, covering a wide range of physicochemical properties were selected, namely: benzoic acid; caffeine; clotrimazole; digoxin; flufenamic acid; ivermectin; mannitol; nicotine; and testosterone. The donor and receptor media for the test substances, the addition of a solubiliser for the lipophilic compounds, as well as the stability and solubility of the test substances in the vehicles, were systematically analysed. Hydrophilic molecules, being freely soluble in water, were applied in buffered saline solutions.

View Article and Find Full Text PDF

A formal validation study was performed, in order to investigate whether the commercially-available reconstructed human epidermis (RHE) models, EPISKIN, EpiDerm and SkinEthic, are suitable for in vitro skin absorption testing. The skin types currently recommended in the OECD Test Guideline 428, namely, ex vivo human epidermis and pig skin, were used as references. Based on the promising outcome of the prevalidation study, the panel of test substances was enlarged to nine substances, covering a wider spectrum of physicochemical properties.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the potential value of different epithelial cell culture systems as in vitro models for studying corneal permeability. Transformed human corneal epithelial (HCE-T) cells and Statens Serum Institut rabbit corneal (SIRC) cells were cultured on permeable filters. SkinEthic human corneal epithelium (S-HCE) and Clonetics human corneal epithelium (C-HCE) were received as ready-to-use systems.

View Article and Find Full Text PDF

Cationically modified poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles have recently been introduced as novel carriers for DNA/RNA delivery. The colloidal characteristics of the nanoparticles--particle size and surface charge--are considered the most significant determinants in the cellular uptake and trafficking of the nanoparticles. Therefore, our aim was to introduce chitosan-coated PLGA nanoparticles, whose size and charge are tunable to adapt for a specific task.

View Article and Find Full Text PDF

Generally, polymeric nanoparticles (NP) for drug targeting are designed to entrap the drug moiety in the core and to present the targeting moiety on the surface. However, in most cases, common preparation techniques of polymeric NP need to be specifically arranged for each compound to be entrapped or attached. In the present work, we introduce a method for versatile conjugation of targeting moieties to the surface of preformed, polymeric NP.

View Article and Find Full Text PDF

Mathematical modeling of skin transport is considered a valuable alternative of in-vitro and in-vivo investigations especially considering ethical and economical questions. Mechanistic diffusion models describe skin transport by solving Fick's 2nd law of diffusion in time and space; however models relying entirely on a consistent experimental data set are missing. For a two-dimensional model membrane consisting of a biphasic stratum corneum (SC) and a homogeneous epidermal/dermal compartment (DSL) methods are presented to determine all relevant input parameters.

View Article and Find Full Text PDF

Purpose: The aim of this study was to elucidate the expression pattern of transport proteins relevant to drug absorption in human cornea and to assess the human corneal epithelial cell line, HCE-T, regarding its use as an in vitro model for drug-absorption studies.

Methods: Human corneal tissue and HCE-T cells were examined for the expression of P-glycoprotein (P-gp/MDR1), multidrug resistance-associated protein 1 (MRP1), multidrug resistance-associated protein 2 (MRP2), lung resistance-related protein (LRP), and breast cancer-resistance protein (BCRP), using reverse transcriptase-polymerase chain reaction and immunofluorescence microscopy. Moreover, transporter activity was measured by bi-directional flux studies across excised human cornea and HCE-T cell layers using a P-gp/MDR1 substrate, rhodamine 123 (Rh123).

View Article and Find Full Text PDF

Aim of this study was to automate sampling and quantification of the previously described apparatus for combined determination of dissolution and permeation through Caco-2 monolayer by means of sequential injection analysis (SIA). Native fluorescence of propranolol HCl in Krebs-Ringer buffer (KRB) was used for quantification. Sampling was done at three different locations within the apparatus at a high sampling frequency (approximately 60 h(-1)).

View Article and Find Full Text PDF

Efflux pump (e.g., P-gp, MRP1, and BCRP) inhibition has been recognized as a strategy to overcome multi-drug resistance and improve drug bioavailability.

View Article and Find Full Text PDF

Film forming polymeric solutions may present an alternative to the common transdermal dosage forms such as patches or gels. To evaluate the potential of these systems for transdermal drug delivery the permeation of ethinylestradiol from four formulations with different polymers was tested across heat separated human epidermis. The formulation with the best results was then modified by incorporating chemical enhancers to further increase the efficiency of the delivery system.

View Article and Find Full Text PDF

Filter-grown monolayers of porcine alveolar epithelial cells (pAEpC) in primary culture have been characterized as an in vitro model for pulmonary absorption screening of xenobiotics, including substrates of efflux systems. Experimental conditions and a protocol for transport experiments were optimized using transepithelial electrical resistances (TEER) and permeability of marker compounds as acceptance criteria. Since new drugs often feature poor water solubility, monolayer integrity in the presence of a solubilizer (dimethyl sulfoxide) was tested.

View Article and Find Full Text PDF

The penetration and storage behavior of dye-containing nanoparticles (diameter 320 nm) into the hair follicles was investigated. The results were compared to the findings obtained with the same amount of dye in the non-particle form. In the first part of the experiments, the penetration of the dye into the hair follicles was investigated in vitro on porcine skin, which is an appropriate model for human tissue.

View Article and Find Full Text PDF

The distribution of the P-glycoprotein (P-gp/MDR1) efflux transporter at mucosal barriers has defined it as a functionally important element in limiting drug absorption into the systemic circulation. However, little is known about the distribution and functionality of P-gp/MDR1 in the human lung. Here, the presence of P-gp/MDR1 was investigated immunohistochemically in distal human lung tissue and at mRNA and protein levels in human alveolar epithelial cells (hAEpC) in primary culture.

View Article and Find Full Text PDF

The aim of our study was to develop an apparatus assessing in vitro permeation through Caco-2 monolayers of oral solid dosage forms as a possible tool to forecast in vivo performance. Therefore, flow through dissolution and permeation modules were connected by means of a stream splitter. Permeation was measured in a specially designed cell, dissolution took place in the apparatus 4, USP.

View Article and Find Full Text PDF